Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Covalent organic frameworks (COFs) represent a new type of crystalline porous polymers that possess pre-designed skeletons, uniform nanopores, and ordered π structure. These attributes make them well-suited for the design of light-emitting materials. However, the majority of COFs exhibits poor luminescence due to aggregation-caused quenching (ACQ), resulting from the strong interaction between adjacent layers. To break the limitation, the building units with three methoxy groups on the walls are used to construct TM-OMe-EBTHz-COF, which suppresses the ACQ effects to improve light-emitting activity of COF. The TM-OMe-EBTHz-COF exhibits a notable emission of yellow-green luminescence in the solid state, with a remarkably high absolute quantum yield of 21.1%. The methoxy groups and hydrazine linkage form three coordination sites, contributing to excellent performance in metal ions sensing. The TM-OMe-EBTHz-COF demonstrates high sensitivity and selectivity to Fe ion. Importantly, the low detection limit is below 150 nanomolar, ranking it among the best-performing Fe sensor systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202300678 | DOI Listing |