A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Signal-off nanozyme-based colorimetric aptasensor for sensitive detection of ampicillin using MnO nanoflowers and gold nanoparticles. | LitMetric

Signal-off nanozyme-based colorimetric aptasensor for sensitive detection of ampicillin using MnO nanoflowers and gold nanoparticles.

Anal Biochem

Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The combination of nanomaterials possessing distinct characteristics and the precision of aptamers facilitates the creation of biosensors that exhibit exceptional selectivity and sensitivity. In this manuscript, we present a highly sensitive aptasensor that utilizes the distinctive characteristics of MnO nanoflowers and gold nanoparticles to selectively detect ampicillin (AMP). In this aptasensor, the mechanism of signal change is attributed to the difference in the oxidase-mimicking activity of MnO nanoflowers in the presence of a free sequence. The inclusion of AMP hindered the creation of a double-stranded DNA configuration through its binding to the aptamer, resulting in an observable alteration in absorbance. The relative absorbance varied linearly with the concentration of AMP in the range of 70 pM to 10 nM with a detection limit of 21.7 pM. In general, the colorimetric aptasensor that has been developed exhibits exceptional selectivity and remarkable stability. It also demonstrates favorable performance in human serum, making it a highly reliable diagnostic tool. Additionally, its versatility is noteworthy as it holds great potential for detecting various antibiotics present in complex samples by merely replacing the utilized sequences with new ones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2024.115459DOI Listing

Publication Analysis

Top Keywords

mno nanoflowers
12
colorimetric aptasensor
8
nanoflowers gold
8
gold nanoparticles
8
exceptional selectivity
8
signal-off nanozyme-based
4
nanozyme-based colorimetric
4
aptasensor
4
aptasensor sensitive
4
sensitive detection
4

Similar Publications