Homofermentative isolated from organic sources exhibit potential ability of lactic acid production.

Front Microbiol

VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There has been an increasing interest in recent years in lactic acid bacteria that are derived from organic sources for lactic acid production. This research article presents the isolation and identification of homofermentative lactic acid bacteria from various novel organic sources, followed by qualitative and quantitative analyses of lactic acid produced. A total of 32 isolates were identified initially from various sources, such as curd (C1, C2), probiotics (P1, P2, and P3), silage (Si1 and Si2), soil samples (S1, S2, and S3), vermicompost (V1 and V2), and Farmyard manure. Biochemical tests such as Gram's staining, catalase test, and oxidase test were conducted for preliminary identification of lactic acid bacteria using De Man, Rogosa, and Sharpe agar (MRS) media. Through selection and identification, based on colony morphology and biochemical characteristics, 18 isolates were identified as lactic acid bacteria. The subsequent analysis included a tube test, screening for organic acid production, and homofermentative screening using homofermentative-heterofermentative differential (HHD) medium for qualitative analysis of lactic acid. The results revealed that 9 out of 18 selected strains were homofermentative and had promising potential for the production of lactic acid. Furthermore, six isolates (P1-1, S1-3, C2-1, V2-3, P2-1, and C1-1) from all of the nine positive strains were subjected to pH testing (0, 24, 48, and 72 h) and titrimetric assay for estimation of % crude lactic acid present. The presence of lactic acid was confirmed using thin-layer chromatography (TLC). L (+)-Lactic acid was quantified using a K-LATE enzymatic assay kit, for the best three isolates (P1-1, S1-3, C2-1). Finally, the strains were subjected to 16SrRNA sequencing and were identified as . Based on the findings of the study, it could be concluded that homofermentative lactic acid bacteria with significant LA-producing ability can be obtained from different organic sources and may prove to be useful in the successful production of lactic acid for biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764624PMC
http://dx.doi.org/10.3389/fmicb.2023.1297036DOI Listing

Publication Analysis

Top Keywords

lactic acid
52
acid bacteria
20
organic sources
16
acid
15
lactic
13
acid production
12
homofermentative lactic
8
isolates identified
8
production lactic
8
isolates p1-1
8

Similar Publications

This study investigates the impact of a defined starter culture on the fermentation of cocoa beans and its influence on the production of volatile and non-volatile compounds related to sensory quality. A microbial consortium comprising Saccharomyces cerevisiae, Pichia kudriavzevii, Levilactobacillus brevis, and Acetobacter okinawensis was selected based on their enzymatic activity and acid regulation properties. Fermentation trials showed that the starter culture enhanced the synthesis of key volatile compounds, particularly esters and higher alcohols, such as 2-phenylethanol and 2-phenylethyl acetate, which contribute floral and fruity aromas.

View Article and Find Full Text PDF

Exploitation of Biodiversity in Bioeconomy: Examples, Opportunities, and Challenges.

Adv Biochem Eng Biotechnol

September 2025

Institute of Process Engineering in Life Sciences, Electrobiotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.

While bioprocesses using Escherichia coli, Corynebacterium glutamicum, various species of Bacillus, lactic acid bacteria, Clostridia, the yeasts Saccharomyces cerevisiae and Pichia pastoris, fungi such as Aspergillus niger, and Chinese hamster ovary cells are well established, the high level of microbial diversity has not yet been exploited industrially. However, the use of alternative organisms has the potential to significantly expand the process window of bioprocesses. These extensions include the use of alternative substrates (e.

View Article and Find Full Text PDF

, a lactic acid gut bacterium, uses exogenous quinones to facilitate extracellular electron transfer (EET) via type II NADH dehydrogenase (Ndh2). To probe Ndh2 specificity, we designed and evaluated a library of biogenic amine-substituted 1,4-naphthoquinones in an Ndh2-dependent EET assay. Analysis of mediator Ndh2 binding interactions revealed that activity correlates with key binding interactions.

View Article and Find Full Text PDF

This study investigates the reparative effect of electroacupuncture on myocardial fibrosis (MF) in mice and explores its impact on intestinal flora and metabolism profile. This examines an investigation into the biological mechanisms underlying electroacupuncture's efficacy in treating MF in mice. Twenty-four male Kunming mice (27-34 g) were randomized into three groups: normal control (NC,  = 8), MF model (MF,  = 8), and electroacupuncture treatment (EA,  = 8).

View Article and Find Full Text PDF

Bioprotective LAB3 cells that produce bacteriocin-like substances were entrapped in 4% (w/w) sodium alginate matrices, either with or without 10% (w/w) sodium caseinate. The effects of bead formulation-alginate alone or combined with caseinate, with or without the addition of 20% (w/w) MRS broth or M17 broth-on the culturability of LAB3 cells within the beads and their anti activity were assessed over 12 days of storage at 30 °C in closed bottles. Calcium-alginate-caseinate beads supplemented with MRS broth proved most effective in preserving both culturability and anti- activity.

View Article and Find Full Text PDF