Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
X-ray dark-filed imaging is a powerful approach to quantify the dimension of micro-structures of the object. Often, a series of dark-filed signals have to be measured under various correlation lengths. For instance, this is often achieved by adjusting the sample positions by multiple times in Talbot-Lau interferometer. Moreover, such multiple measurements can also be collected via adjustments of the inter-space between the phase gratings in dual phase grating interferometer. In this study, the energy resolving capability of the dual phase grating interferometer is explored with the aim to accelerate the data acquisition speed of dark-filed imaging. To do so, both theoretical analyses and numerical simulations are investigated. Specifically, the responses of the dual phase grating interferometer at varied X-ray beam energies are studied. Compared with the mechanical position translation approach, the combination of such energy resolving capability helps to greatly shorten the total dark-field imaging time in dual phase grating interferometer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.503843 | DOI Listing |