98%
921
2 minutes
20
Herein, a series of water-soluble supramolecular inclusion complexes (ICs) probes were prepared using cyclodextrins (CDs) and fraxetin (FRA) to detect nicotine (NT) with high selectivity in vitro and in vivo. The FRA/CD ICs prepared through the saturated solution method exhibited excellent water solubility, stability, and biocompatibility. A clear host-guest inclusion model was provided by the theoretical calculations. The investigation revealed that NT was able to enter into the cavities of FRA/β-CD IC and FRA/γ-CD IC, and further formed charge transfer complexes with FRA in the CD cavities, resulting in a rapid and highly selective fluorescence-enhanced response with the lowest detection limits of 1.9 × 10 M and 9.7 × 10 M, and the linear response ranged from 0.02 to 0.3 mM and 0.01-0.05 mM, respectively. The IC probes showed good anti-interference performance to common interferents or different pH environments, with satisfactory reproducibility and repeatability of response to NT. Furthermore, the potentiality of the probes was confirmed through fluorescence imaging experiments using human lung cancer cells and the lung tissue of mice. This study offers a fresh perspective for detecting NT in environmental and biomedical analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2023.121624 | DOI Listing |
J Healthc Sci Humanit
January 2024
Formerly Associate Professor of Epidemiology and Risk Analysis, Department of Pathobiology/Department of Graduate Public Health, College of Veterinary Medicine, Tuskegee University, Phone: (334) 524-1988, Email:
The COVID-19 pandemic is a highly infectious disease of paramount public health importance. COVID-19 is mainly transmitted via human-to-human contact. This could be through self-inoculation resulting from failure to observe proper hand hygiene and infection control practices.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as "click chemistry", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
Chimeric antigen receptor T (CAR-T)-cell therapy is a promising resolution for solid tumors, but its corresponding clinical translation has been hindered by unsatisfactory therapeutic potency and severe cytokine release syndrome. Herein, tetracycline (Tet)-On inducible human epidermal growth factor receptor 1 (HER1)-targeted CAR-T (Tet-HER1-CAR-T) cells were engineered to enable spatially selective activation at tumor sites by doxycycline (Doxy), which is delivered by pH-responsive stealth liposomal calcium carbonate nanoparticles (Doxy@CaCO-PEG). Compared with the intravenous administration of conventional HER1-CAR-T cells and Tet-HER1-CAR-T cells activated by free Doxy, concurrent intravenous administration of Tet-HER1-CAR-T cells and Doxy@CaCO-PEG leads to the localized tumor activation of Tet-HER1-CAR-T cells and reduced systemic secretion of inflammatory cytokines.
View Article and Find Full Text PDFRSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDFBackground: Functional and structural studies of the brain highlight the importance of white matter alterations in schizophrenia. However, molecular studies of the alterations associated with the disease remain insufficient.
Aim: To study the lipidome and transcriptome composition of the corpus callosum in schizophrenia, including analyzing a larger number of biochemical lipid compounds and their spatial distribution in brain sections, and corpus callosum transcriptome data.