Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) is a highly toxic heavy metal that poses significant threats to living organisms. Curvularia tsudae has demonstrated remarkable survival capabilities in the presence of high Cd concentrations, exhibiting its exceptional Cd tolerance. Although some physiological studies have been conducted, the molecular mechanisms underlying Cd tolerance in C. tsudae is largely unknown. In this study, a comparative transcriptome analysis was performed to explore the molecular mechanisms of C. tsudae under Cd stress. Among the 10,498 identified unigenes, 2526 differentially expressed genes (DEGs) were identified between the Cd-free and Cd-treated samples. Functional annotation and enrichment analysis of these DEGs identified several key biological processes involved in coping with Cd stress. Genes related to cell wall modification and organic acid metabolism contributes to Cd binding or chelation. Fourier transform infrared spectroscopy (FTIR) analysis further highlighted the modifications in functional groups with the cell wall under Cd stress. Furthermore, the transporters tended to be modulated in response to Cd stress, and up-regulated genes involved in antioxidants likely contributes to high Cd tolerance. The processes from DNA to protein metabolism appeared to responsive to the presence of Cd stress as well. These results contribute to the advance of the current knowledge about the response of C. tsudae to Cd stress and lay the foundation for further advancements in using fungi for the remediation of Cd-polluted environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.141093DOI Listing

Publication Analysis

Top Keywords

transcriptome analysis
8
curvularia tsudae
8
molecular mechanisms
8
tsudae stress
8
degs identified
8
cell wall
8
stress
7
tsudae
5
analysis reveals
4
reveals diverse
4

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF

Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

Endothelial cell-ILC3 crosstalk via the ET-1/EDNRA axis promotes NKp46ILC3 glycolysis to alleviate intestinal inflammation.

Cell Mol Immunol

September 2025

Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua

Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).

View Article and Find Full Text PDF