A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Emergence of nanoscale viscoelasticity from single cancer cells to established tumors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumors are complex materials whose physical properties dictate growth and treatment outcomes. Recent evidence suggests time-dependent physical properties, such as viscoelasticity, are crucial, distinct mechanical regulators of cancer progression and malignancy, yet the genesis and consequences of tumor viscoelasticity are poorly understood. Here, using Wide-bandwidth AFM-based ViscoElastic Spectroscopy (WAVES) coupled with mathematical modeling, we probe the origins of tumor viscoelasticity. From single carcinoma cells to increasingly sized carcinoma spheroids to established tumors, we describe a stepwise evolution of dynamic mechanical properties that create a nanorheological signature of established tumors: increased stiffness, decreased rate-dependent stiffening, and reduced energy dissipation. We dissect this evolution of viscoelasticity by scale, and show established tumors use fluid-solid interactions as the dominant mechanism of mechanical energy dissipation as opposed to fluid-independent intrinsic viscoelasticity. Additionally, we demonstrate the energy dissipation mechanism in spheroids and established tumors is negatively correlated with the cellular density, and this relationship strongly depends on an intact actin cytoskeleton. These findings define an emergent and targetable signature of the physical tumor microenvironment, with potential for deeper understanding of tumor pathophysiology and treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10837793PMC
http://dx.doi.org/10.1016/j.biomaterials.2023.122431DOI Listing

Publication Analysis

Top Keywords

established tumors
20
energy dissipation
12
viscoelasticity single
8
physical properties
8
tumor viscoelasticity
8
spheroids established
8
viscoelasticity
6
tumors
6
established
5
emergence nanoscale
4

Similar Publications