98%
921
2 minutes
20
Objective: To summarize the use of deep learning in the detection of voice disorders using acoustic and laryngoscopic input, compare specific neural networks in terms of accuracy, and assess their effectiveness compared to expert clinical visual examination.
Data Sources: Embase, MEDLINE, and Cochrane Central.
Review Methods: Databases were screened through November 11, 2023 for relevant studies. The inclusion criteria required studies to utilize a specified deep learning method, use laryngoscopy or acoustic input, and measure accuracy of binary classification between healthy patients and those with voice disorders.
Results: Thirty-four studies met the inclusion criteria, with 18 focusing on voice analysis, 15 on imaging analysis, and 1 both. Across the 18 acoustic studies, 21 programs were used for identification of organic and functional voice disorders. These technologies included 10 convolutional neural networks (CNNs), 6 multilayer perceptrons (MLPs), and 5 other neural networks. The binary classification systems yielded a mean accuracy of 89.0% overall, including 93.7% for MLP programs and 84.5% for CNNs. Among the 15 imaging analysis studies, a total of 23 programs were utilized, resulting in a mean accuracy of 91.3%. Specifically, the twenty CNNs achieved a mean accuracy of 92.6% compared to 83.0% for the 3 MLPs.
Conclusion: Deep learning models were shown to be highly accurate in the detection of voice pathology, with CNNs most effective for assessing laryngoscopy images and MLPs most effective for assessing acoustic input. While deep learning methods outperformed expert clinical exam in limited comparisons, further studies integrating external validation are necessary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ohn.636 | DOI Listing |
Hum Brain Mapp
September 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Internal Medicine, University of California, Riverside School of Medicine, Riverside, USA.
Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFRadiol Adv
September 2024
Department of Radiology, Northwestern University and Northwestern Medicine, Chicago, IL, 60611, United States.
Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.
Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.