Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The proteins were mainly derived from Protaetia brevitarsis larval extracts obtained using two empty intestine methods (traditional static method: TSM or salt immersion stress method: SISM) and extraction solvents (water: W or 50 % water-ethanol: W:E), and the proteins were used as objects to investigate the effect of emptying intestine methods on hypolipidemic peptides. The results revealed that the F-2 fractions of protein hydrolysate had stronger in vitro hypolipidemic activity, with the peptides obtained by SISM possessing a stronger cholesterol micelle solubility inhibition rate, especially in SISM-W:E-P. Moreover, a total of 106 peptides were tentatively identified, among which SISM identified more peptides with an amino acid number < 8. Meanwhile, five novel peptides (YPPFH, YPGFGK, KYPF, SPLPGPR and VPPP) exhibited good hypolipidemic activity in vitro and in vivo, among which YPPFH, VPPP and KYPF had strong inhibitory activities on pancreatic lipase (PL) and cholesteryl esterase (CE), and KYPF, SPLPGPR and VPPP could significantly reduce the TG content in Caenorhabditis elegans. Thus, P. brevitarsis can be developed as a naturally derived hypolipidemic component for the development and application in functional foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113813DOI Listing

Publication Analysis

Top Keywords

protein hydrolysate
8
protaetia brevitarsis
8
intestine methods
8
peptides
5
identification characterization
4
characterization hypolipidemic
4
hypolipidemic novel
4
novel peptides
4
peptides protein
4
hydrolysate protaetia
4

Similar Publications

Impact of mixed β-conglycinin and hydrolysates of glycinin on the thermal transition and polymerization behavior of gluten.

Food Chem

September 2025

College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China. Electronic address: wangpei@nj

Selectively hydrolyzed soy protein can enhance wheat-based product quality by modulating gluten thermal polymerization. This study examined the effects of β-conglycinin (7S) and glycinin hydrolysate (GH) on gluten rheological and thermal properties, particle size, Raman spectra, and microstructure during heating. Both 7S and GH improved gluten viscoelasticity, with their combined addition (7S/GH) showing the strongest effect.

View Article and Find Full Text PDF

Potentials of food-derived peptides as novel antihypertensive agents and their acting mechanisms.

Food Chem

September 2025

Institute of Food and Drug Research for One Health, Ludong University, Yantai, People's Republic of China; School of Food Engineering, Ludong University, Yantai, People's Republic of China. Electronic address:

Food-derived bioactive peptides exhibit therapeutic potentials in hypertension management in recent years. This review firstly synthesizes findings from a total of 62 relevant studies concerning the potentials of both plant- and animal-derived peptides. Secondly, the molecular targets and acting mechanisms underlying the antihypertensive effects of food-derived peptides are discussed.

View Article and Find Full Text PDF

Peptides produced from soybean tempeh that inhibit angiotensin-converting enzyme (ACE) provide a promising source of novel antihypertensive agents. This study utilized two cysteine proteases (papain and bromelain) to generate ACE inhibitory peptides from the protein hydrolysate of soybean tempeh. The trials were arranged using a Box-Behnken design to achieve optimal hydrolysis conditions.

View Article and Find Full Text PDF

Enhanced antibody production in Chinese hamster ovary cell cultures supplemented with barley shochu distillation by-product supernatant.

J Biosci Bioeng

September 2025

Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan.

Antibody production in Chinese hamster ovary (CHO) cell culture was enhanced by supplementing the culture medium with barley shochu distillation by-product supernatant (BX2). To predict antibody production following BX2 addition, fed-batch culture experiments were conducted under varying BX2 conditions using a response surface methodology. BX2 supplementation was predicted to improve antibody production by 138 %, 146 %, 120 %, and 240 % in IgG-producing CHO-MK1, CHO-MK2, CHO-DG44, and Fc-fusion protein-producing CHO-DG44 cells, respectively, compared to controls without BX2.

View Article and Find Full Text PDF

With the growing demand for high-throughput analyses that can detect diverse molecules with varying physicochemical properties in shorter times, researchers are increasingly focused on developing or modifying analytical methods. This is particularly relevant in the food, pharmaceutical/nutraceutical, cosmetic, agricultural, and environmental industries. This study aimed to modify, establish, and validate a high-performance liquid chromatography method with ultraviolet detection (HPLC-UV) for the simultaneous determination of disodium guanylate (GMP) and disodium inosinate (IMP) in mushrooms, using as a model.

View Article and Find Full Text PDF