Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: In addition to being secreted into the intercellular spaces by exocytosis, insulin-like growth factor binding protein 5 (IGFBP5) may also remain in the cytosol or be transported to the nucleus. Depending on the different cellular context and subcellular distribution, IGFBP5 can act as a tumor suppressor or promoter through insulin-like growth factor -dependent or -independent mechanisms. Yet, little is known about the impacts of IGFBP5 on acute myeloid leukemia (AML) and its underlying mechanism.
Methods: Here we investigated the roles of IGFBP5 in human AML by using recombinant human IGFBP5 (rhIGFBP5) protein and U937 and THP1 cell lines which stably and ectopically expressed IGFBP5 or mutant IGFBP5 (mtIGFBP5) with the lack of secretory signal peptide. Cell counting kit-8 and flow cytometry assay were conducted to assess the cell viability, cell apoptosis and cell cycle distribution. Cytotoxicity assay was used to detect the chemosensitivity. Leukemia xenograft model and hematoxylin-eosin staining were performed to evaluate AML progression and extramedullary infiltration in vivo.
Results: In silico analysis demonstrated a positive association between IGFBP5 expression and overall survival of the AML patients. Both IGFBP5 overexpression and extrinsic rhIGFBP5 suppressed the growth of THP1 and U937 cells by inducing cell apoptosis and arresting G1/S transition and promoted the chemosensitivity of U937 and THP1 cells to daunorubicin and cytarabine. However, overexpression of mtIGFBP5 failed to demonstrate these properties. An in vivo xenograft mouse model of U937 cells also indicated that overexpression of IGFBP5 rather than mtIGFBP5 alleviated AML progression and extramedullary infiltration. Mechanistically, these biological consequences depended on the inactivation of insulin-like growth factor 1 receptor -mediated phosphatidylinositol-3-kinase/protein kinase B pathway.
Conclusions: Our findings revealed secreted rather than intracellular IGFBP5 as a tumor-suppressor and chemosensitizer in AML. Upregulation of serum IGFBP5 by overexpression or addition of extrinsic rhIGFBP5 may serve as a suitable therapeutic approach for AML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829870 | PMC |
http://dx.doi.org/10.1016/j.neo.2023.100952 | DOI Listing |