A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fabrication and evaluation of a molecular-imprinted-polymer functionalized electrode for selective electric field-assisted solid-phase microextraction of phytohormones. | LitMetric

Fabrication and evaluation of a molecular-imprinted-polymer functionalized electrode for selective electric field-assisted solid-phase microextraction of phytohormones.

Talanta

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Specific extraction and separation plays a pivotal role in the accurate quantification of trace phytohormones (PHs). However, due to their high polarity, specific capture of PHs is challenging. In this study, under the assistance of electric field, a molecular-imprinted-polymer functionalized electrode (MIP@ED) was in-situ prepared using 3-indoleacetic acid (IAA) as template and employed as the adsorbent of electric field-assisted solid-phase microextraction (EA-SPME) for specific capture of PHs. Results showed that the implementation of electric field during the preparation of MIP@ED and EA-SPME procedures improved the extraction selectivity, the selective factors towards IAA and its structural analogues increased from 2.09 to 2.45 to 2.88-3.51. Under the optimum conditions, the proposed MIP@ED/EA-SPME was combined with HPLC technique to monitor trace PHs in water and agricultural products. The achieved limits of detection were in the ranges of 0.0053-0.011 μg/L and 0.048-0.12 μg/kg for water and agricultural product, respectively. The established approach was successfully applied to quantify trace PHs in real samples, and the spiked recoveries varied from 84.0 % to 118 % with good repeatability (RSDs blow 10 %). The obtained results provided clear evidence that the developed approach employing the MIP@ED/EA-SPME technique demonstrated high sensitivity, good selectivity, satisfactory reproducibility and environmental friendliness in the quantification of trace PHs in complex samples. In addition, the current study supplied a new strategy to enhance the specific recognition performance of MIP-based SPME.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.125572DOI Listing

Publication Analysis

Top Keywords

trace phs
12
molecular-imprinted-polymer functionalized
8
functionalized electrode
8
electric field-assisted
8
field-assisted solid-phase
8
solid-phase microextraction
8
quantification trace
8
specific capture
8
capture phs
8
electric field
8

Similar Publications