Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extracellular nanovesicles (EVs) are lipid-based vesicles secreted by cells and are present in all bodily fluids. They play a central role in communication between distant cells and have been proposed as potential indicators for the early detection of a wide range of diseases, including different types of cancer. However, reliable quantification of a specific subpopulation of EVs remains challenging. The process is typically lengthy and costly and requires purification of relatively large quantities of biopsy samples. Here, we show that microcantilevers operated with sufficiently small vibration amplitudes can successfully quantify a specific subpopulation of EVs directly from a drop (0.1 mL) of unprocessed saliva in less than 20 min. Being a complex fluid, saliva is highly non-Newtonian, normally precluding mechanical sensing. With a combination of standard rheology and microrheology, we demonstrate that the non-Newtonian properties are scale-dependent, enabling microcantilever measurements with a sensitivity identical to that in pure water when operating at the nanoscale. We also address the problem of unwanted sensor biofouling by using a zwitterionic coating, allowing efficient quantification of EVs at concentrations down to 0.1 μg/mL, based on immunorecognition of the EVs' surface proteins. We benchmark the technique on model EVs and illustrate its potential by quantifying populations of natural EVs commonly present in human saliva. The method effectively bypasses the difficulty of targeted detection in non-Newtonian fluids and could be used for various applications, from the detection of EVs and viruses in bodily fluids to the detection of molecular clusters or nanoparticles in other complex fluids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788824PMC
http://dx.doi.org/10.1021/acsami.3c12035DOI Listing

Publication Analysis

Top Keywords

bodily fluids
8
specific subpopulation
8
subpopulation evs
8
evs
7
quantitative detection
4
detection biological
4
biological nanovesicles
4
nanovesicles drops
4
saliva
4
drops saliva
4

Similar Publications

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Next-generation sequencing has greatly advanced genomics, enabling large-scale studies of population genetics and complex traits. Genomic DNA (gDNA) from white blood cells has traditionally been the main data source, but cell-free DNA (cfDNA), found in bodily fluids as fragmented DNA, is increasingly recognized as a valuable biomarker in clinical and genetic studies. However, a direct comparison between cfDNA and gDNA has not been fully explored.

View Article and Find Full Text PDF

Hydrogel adhesives with a hydrodynamically induced liquid-solid transition for annular fissure sealing and inflammation modulation following microdiscectomy.

J Orthop Translat

November 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Interdisciplinary Innovation Center for Nanomedicine, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow Universi

Background: Intervertebral disc (IVD) herniation is a major cause of low back pain and disability, with microdiscectomy being the standard surgical treatment. However, microdiscectomy fails to address annulus fibrosus (AF) defects, increasing the risk of recurrent herniation. Current therapeutic strategies for this condition remain limited in efficacy.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major global health burden, ranking among the leading causes of cancer-related deaths. Despite improvements in screening and treatment, challenges such as late-stage diagnosis, high recurrence rates, and therapy resistance continue to impede optimal outcomes. Liquid biopsy, a minimally invasive technique that analyzes tumor-derived components in bodily fluids-including circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs)-is emerging as a powerful tool to transform CRC management across the disease continuum.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are small anuclear cellular membrane encapsulated fragments of importance for cellular interaction and transfer of information. These small vesicles, diverse in size and functionality, can be obtained from cells, tissues and bodily fluids. A complicated step for obtaining EVs from whole organs is understanding the optimal methodology for organ processing.

View Article and Find Full Text PDF