Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca release into the cytoplasm to regulate the release of BMP.

Materials And Methods: To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown.

Results: We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release.

Conclusion: Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and wing development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733776PMC
http://dx.doi.org/10.1089/bioe.2022.0036DOI Listing

Publication Analysis

Top Keywords

wing development
12
irk channels
12
calcium
9
endoplasmic reticulum
8
reticulum calcium
8
bmp/dpp release
8
release wing
8
control calcium
8
wing
7
release
6

Similar Publications

RNAi bioassays targeting bursicon reveal potential targets for pest control of Henosepilachna vigintioctopunctata.

Pestic Biochem Physiol

November 2025

Henan Engineering Laboratory of Pest Biological Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, People's Republic of China.

Henosepilachna vigintioctopunctata represents a significant economic pest, typically controlled through the use of chemical insecticides. The introduction of RNA interference (RNAi) technology has opened new avenues for biopesticide development, leading to the identification of various genes that are crucial for the growth and development of insects. However, the efficient screening of target genes in H.

View Article and Find Full Text PDF

Disruption of egg and nymph development via RNAi-mediated Glutamine: fructose-6-phosphate aminotransferase knockdown in Locusta migratoria: A promising strategy for pest management.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China.

Glutamine: fructose-6-phosphate aminotransferase (GFAT) is the first rate-limiting enzyme in the hexosamine biosynthetic pathway, which plays a crucial role in various biological processes, including chitin metabolism in insects. Locusta migratoria, a widespread and highly destructive agricultural pest, poses a significant threat due to its rapid reproduction and long-distance migration. In this study, we identified and characterized LmGFAT as a key regulator of locust development.

View Article and Find Full Text PDF

The LIM domain protein LmFHL2 is required for nymph-adult metamorphosis of Locusta migratoria.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China. Electronic address:

The four-and-a-half LIM domain protein 2 (FHL2) is a conserved transcriptional co-regulator critical for vertebrate development and metabolism, yet its roles in arthropods remain poorly understood. Here, we report the functional characterization of LmFHL2 in the migratory locust Locusta migratoria, a devastating pest reliant on precise molting cycles for growth and swarming. Phylogenetic and expression analyses revealed high conservation of LmFHL2 across insects, with predominant expression in integument and gut tissues.

View Article and Find Full Text PDF

Meta-analysis of poultry organ weights and their relationship with meat yield.

Poult Sci

August 2025

Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada; Department of Animal and Veterinary Sciences, Aarhus University, Bliche

Late-stage mortality is a significant challenge for the poultry industry, leading to substantial economic losses, concerns about animal welfare, and operational sustainability. Heart-related conditions, including ascites syndrome, pulmonary hypertension syndrome, hypertrophic cardiomyopathy, and sudden death syndrome, contribute significantly to this issue. The increasing prevalence of these conditions is potentially linked to intense selection pressure aimed at maximizing meat yield, particularly breast meat.

View Article and Find Full Text PDF

This study addresses the pressing global health burden of mosquito-borne diseases by investigating the application of Convolutional Neural Networks (CNNs) for mosquito species identification using wing images. Conventional identification methods are hampered by the need for significant expertise and resources, while CNNs offer a promising alternative. Our research aimed to develop a reliable and applicable classification system that can be used under real-world conditions, with a focus on improving model adaptability to unencountered devices, mitigating dataset biases, and ensuring usability across different users without standardized protocols.

View Article and Find Full Text PDF