98%
921
2 minutes
20
Obesity, a widespread health concern characterized by the excessive accumulation of body fat, is a complex condition influenced by genetics, environment, and social determinants. Recent research has increasingly focused on the role of gut microbiota in obesity, highlighting its pivotal involvement in various metabolic processes. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, interacts with the host in a myriad of ways, impacting energy metabolism, appetite regulation, inflammation, and the gut-brain axis. Dietary choices significantly shape the gut microbiota, with diets high in fat and carbohydrates promoting the growth of harmful bacteria while reducing beneficial microbes. Lifestyle factors, like physical activity and smoking, also influence gut microbiota composition. Antibiotics and medications can disrupt microbial diversity, potentially contributing to obesity. Early-life experiences, including maternal obesity during pregnancy, play a vital role in the developmental origins of obesity. Therapeutic interventions targeting the gut microbiota, including prebiotics, probiotics, fecal microbiota transplantation, bacterial consortium therapy, and precision nutrition, offer promising avenues for reshaping the gut microbiota and positively influencing weight regulation and metabolic health. Clinical applications of microbiota-based therapies are on the horizon, with potential implications for personalized treatments and condition-based interventions. Emerging technologies, such as next-generation sequencing and advanced bioinformatics, empower researchers to identify specific target species for microbiota-based therapeutics, opening new possibilities in healthcare. Despite the promising outlook, microbiota-based therapies face challenges related to microbial selection, safety, and regulatory issues. However, with ongoing research and advances in the field, these challenges can be addressed to unlock the full potential of microbiota-based interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748854 | PMC |
http://dx.doi.org/10.7759/cureus.49339 | DOI Listing |
Int J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.
Food Funct
September 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Medical Microbiology and Parasitology, Faculty of Medicine, Selangor Branch, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia.
Streptococcus bovis is an opportunistic bacterium consistently associated with colorectal cancer (CRC). This article reviews previous experimental evidence that has successfully demonstrated the role of S. bovis species in the context of CRC.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDF