From biomarkers to community composition: Negative effects of UV/chlorine-treated reclaimed urban wastewater on freshwater biota.

Sci Total Environ

Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Grup de Recerca Freshwater Ecology, Hydrology and Management (FEHM), Universitat de Barcelona, Barcelona, Catalonia, Spain.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of urban wastewater reclaimed water has recently increased across the globe to restore stream environmental flows and mitigate the effects of water scarcity. Reclaimed water is disinfected using different treatments, but their effects into the receiving rivers are little studied. Physiological bioassays and biomarkers can detect sub-lethal effects on target species, but do not provide information on changes in community structure. In contrast, official monitoring programs use community structure information but often at coarse taxonomic resolution level that may fail to detect species level impacts. Here, we combined commonly used biomonitoring approaches from organism physiology to community species composition to scan a broad range of effects of disinfection of reclaimed water by UV-light only and both UV/chlorine on the biota. We (1) performed bioassays in one laboratory species (water flea Daphnia magna) and measured biomarkers in two wild species (caddisfly Hydropsyche exocellata and the barbel Luciobarbus graellsii), (2) calculated standard indices of biotic quality (IBQ) for diatoms, benthic macroinvertebrates, and fishes, and (3) analysed community species composition of eukaryotes determined by Cytochrome Oxidase C subunit I (cox1) metabarcoding. Only the UV/chlorine treatment caused significant changes in feeding rates of D. magna and reduced antioxidant defenses, increased anaerobic metabolism and altered the levels of lipid peroxidiation in H. exocellata. However, inputs of reclaimed water were significantly associated with a greater proportion of circulating neutrophils and LG-PAS cells in L. graellsii. Despite IBQ did not discriminate between the two water treatments, metabarcoding data detected community composition changes upon exposure to UV/chlorine reclaimed water. Overall, despite the effects of UV/chlorine-treated water were transient, our study suggests that UV-light treated is less harmful for freshwater biota than UV/chlorine-treated reclaimed water, but those effects depend of the organizational level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169561DOI Listing

Publication Analysis

Top Keywords

reclaimed water
24
water
10
community composition
8
effects uv/chlorine-treated
8
uv/chlorine-treated reclaimed
8
urban wastewater
8
freshwater biota
8
community structure
8
community species
8
species composition
8

Similar Publications

Performance assessment of reclaimed fly ash-slag geopolymers incorporating waste spent garnet and waste foundry sand under different curing regimes.

Environ Res

September 2025

Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.

Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).

View Article and Find Full Text PDF

Integrated metagenomic, culture-based, and whole genome sequencing analyses of antimicrobial resistance in wastewater and drinking water treatment plants in Barcelona, Spain.

Int J Hyg Environ Health

September 2025

ISGlobal, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

The misuse and overuse of antimicrobials drive the emergence of antimicrobial resistance (AMR), a critical global health concern. While wastewater treatment plants (WWTPs) are essential for removing microorganisms and contaminants, they also serve as hotspots for antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), facilitating their persistence and dissemination. This study investigated AMR in two WWTPs and one drinking water treatment plant (DWTP) in the Baix Llobregat area of Barcelona, Spain.

View Article and Find Full Text PDF

Maternal Exposure to Carbamazepine at Environmentally Relevant Concentrations Causes Growth Delay in Mouse Embryos.

ACS Omega

August 2025

Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.

The anticonvulsant drug carbamazepine is ubiquitous in the environment and has even even detected in human urine after consuming produce irrigated with reclaimed wastewater. Whether unintentional carbamazepine exposure through food and water affects public health is unknown. Its potential adverse effects are particularly concerning during pregnancy, as carbamazepine increases the risk of intrauterine growth restriction and congenital malformations in fetuses of carbamazepine-prescribed mothers.

View Article and Find Full Text PDF

Water quality of reclaimed lakes in post-mining locations of Czech Republic.

Environ Monit Assess

September 2025

Microbiology Section, Food Business Unit, ALS Czech Republic, Na Harfe 336/9, Prague 9, 190 00, Czech Republic.

Post-mining lakes in the Czech Republic, especially in North Bohemia, represent distinctive opportunities for ecological transformation of degraded landscapes. Such lakes form in closed open-pit mines, where they create new water and wetland habitats. The ecological development of such systems is strongly affected by water quality, which is often impaired by residual contamination from mining and nutrient imbalances.

View Article and Find Full Text PDF

The increasing water scarcity and energy demands in coastal cities, exacerbated by climate variability, necessitate integrated and sustainable water management solutions. This study introduces a novel hybrid volume regulation framework that leverages non-conventional water sources including reclaimed wastewater, stormwater runoff, and desalinated water to achieve circular water use and zero discharge into natural bodies. The aim is the use of non-conventional resources by the integration of hydraulic and energy models through genetic algorithm optimization, enabling the design of a resilient infrastructure to improve the deficit hydric in irrigation communities.

View Article and Find Full Text PDF