A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigation of Crystallization, Morphology, and Mechanical Properties of Polypropylene/Polypropylene-Polyethylene Block Copolymer Blends. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyethylene (PE)-based elastomers are the ideal choice for enhancing the compatibility of polypropylene/polyethylene (PP/PE) blends and improving the mechanical properties of PP-based materials. However, the issue of blend systems lies in the interplay between the crystallization processes. Therefore, we investigated the crystallization behavior during the cooling process of a new generation of PP/PE block copolymers (PP-b-PE) and random polypropylene (PPR, a copolymer of propylene and a small amount of ethylene or an alpha-olefin) blends using in-situ X-ray diffraction/scattering and differential scanning calorimetry (DSC) techniques. We also conducted mechanical performance tests on PPR/PP-b-PE blends at room temperature and low temperature (-5 °C). The results indicate that during the cooling process, the PP phase of PP-b-PE will follow the PPR to crystallize in advance and form a eutectic mixture, thereby enhancing the compatibility of PP/PE. Moreover, the PPR/PP-b-PE blend will form stable β-(300) crystals with excellent mechanical properties. Due to the improved compatibility of PP/PE with PP-b-PE, PE crystals are dispersed within PP crystals, providing bonding that improves the toughness of PPR under the low stiffness failure conditions of PPR/PP-b-PE blends, thereby enhancing their impact performance at low and room temperatures. This research has great significance for both recycling waste plastics and enhancing the low-temperature toughness of PPR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748373PMC
http://dx.doi.org/10.3390/polym15244680DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
enhancing compatibility
8
cooling process
8
ppr/pp-b-pe blends
8
compatibility pp/pe
8
toughness ppr
8
blends
5
investigation crystallization
4
crystallization morphology
4
mechanical
4

Similar Publications