Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inhibition of the Embryonic Ectoderm Development (EED) subunit in (PRC2) can inhibit tumor growth. In this paper, we selected six experimentally designed EED competitive Inhibitors of the triazolopyrimidine derivatives class. We investigated the difference in the binding mode of the natural substrate to the Inhibitors and the effects of differences in the parent nuclei, heads, and tails of the Inhibitors on the inhibitory capacity. The results showed that the binding free energy of this class of Inhibitors was close to or lower compared to the natural substrate, providing an energetic basis for competitive inhibition. For the Inhibitors, the presence of a strong negatively charged group at the 6-position of the parent nucleus or the 8'-position of the head would make the hydrogen atom on the head imino group prone to flip, resulting in the vertical movement of the parent nucleus, which significantly decreased the inhibitory ability. When the 6-position of the parent nucleus was a nonpolar group, the parent nucleus would move horizontally, slightly decreasing the inhibitory ability. When the 8'-position of the head was methylene, it formed an intramolecular hydrophobic interaction with the benzene ring on the tail, resulting in a significant increase in inhibition ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745707PMC
http://dx.doi.org/10.3390/molecules28247997DOI Listing

Publication Analysis

Top Keywords

parent nucleus
16
embryonic ectoderm
8
ectoderm development
8
triazolopyrimidine derivatives
8
natural substrate
8
6-position parent
8
8'-position head
8
inhibitory ability
8
inhibitors
6
parent
5

Similar Publications

Humans frequently make decisions that impact close others. Prior research has shown that people have stable preferences regarding such decisions and maintain rich, nuanced mental representations of their close social partners. Yet, if and how such mental representations shape social decisions preferences remains to be seen.

View Article and Find Full Text PDF

Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability.

Cell Rep

September 2025

Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.

View Article and Find Full Text PDF

Comprehensive and metabolic profiling of amphenmulin: a novel pleuromutilin derivative characterized by UHPLC-Q-TOF-MS/MS.

Front Vet Sci

August 2025

Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Amphenmulin is a novel pleuromutilin derivative with proven excellent antibacterial activity. To investigate its metabolism in animals, ultra-high-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was employed to analyze and identify metabolites in rats and chickens and using human, rat, pig, chicken and beagle dog liver microsomes. We identified 18 metabolites from liver microsomes and 24 and 17 metabolites for rats and chickens, respectively.

View Article and Find Full Text PDF

The infant oral microbiome is a complex and dynamic microbial community that undergoes various transformations during human development. From birth, these microorganisms are modulated by factors such as birth type, nutrition, oral hygiene, hormonal changes, and environmental and socioeconomic conditions. These elements interact continuously, shaping the diversity and stability of the oral microbiome and consequently influencing the oral and general health of individuals.

View Article and Find Full Text PDF

Igf2 adult-specific skeletal muscle enhancer activity revealed in mice with intergenic CTCF boundary deletion.

PLoS Genet

August 2025

University of Pennsylvania Perelman School of Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America.

Precise, monoallelic expression of imprinted genes is governed by cis regulatory elements called imprinting control regions (ICRs) and enhancer-promoter (E-P) interactions shaped by local chromatin architecture. The Igf2/H19 locus employs allele-specific CTCF binding at the ICR to instruct enhancer accessibility to maternal H19 and paternal Igf2 promoters. Here, we investigate the CTCF-bound centrally conserved domain (CCD), intergenic to H19 and Igf2, and an adjacent widely expressed lncRNA.

View Article and Find Full Text PDF