98%
921
2 minutes
20
Context: Altered metabolic signatures on steroidogenesis may characterize individual subtypes of congenital adrenal hyperplasia (CAH), but conventional diagnostic approaches are limited to differentiate subtypes.
Objective: We explored metabolic characterizations and identified multiple diagnostic biomarkers specific to individual subtypes of CAH.
Methods: Liquid chromatography-mass spectrometry-based profiling of 33 adrenal steroids was developed and applied to serum samples obtained from 67 CAH patients and 38 healthy volunteers.
Results: Within- and between-run precisions were 95.4% to 108.3% and 94.1% to 110.0%, respectively, while all accuracies were <12% and the correlation coefficients () were > 0.910. Metabolic ratios corresponding to 21-hydroxylase characterized 21-hydroxylase deficiency (21-OHD; n = 63) from healthy controls (area under the curve = 1.0, < 1 × 10 for all) and other patients with CAH in addition to significantly increased serum 17α-hydroxyprogesterone ( < 1 × 10) and 21-deoxycortisol ( < 1 × 10) levels. Higher levels of mineralocorticoids, such as corticosterone (B) and 18-hydroxyB, were observed in 17α-hydroxylase deficiency (17α-OHD; N = 3), while metabolic ratio of dehydroepiandrosterone sulfate to pregnenolone sulfate was remarkably decreased against all subjects. A patient with 11β-hydroxylase deficiency (11β-OHD) demonstrated significantly elevated 11-deoxycortisol and its metabolite tetrahydroxy-11-deoxyF, with reduced metabolic ratios of 11β-hydroxytestosterone/testosterone and 11β-hydroxyandrostenedione/androstenedione. The steroid profiles resulted in significantly decreased cortisol metabolism in both 21-OHD and 17α-OHD but not in 11β-OHD.
Conclusion: The metabolic signatures with specific steroids and their corresponding metabolic ratios may reveal individual CAH subtypes. Further investigations with more substantial sample sizes should be explored to enhance the clinical validity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10735290 | PMC |
http://dx.doi.org/10.1210/jendso/bvad155 | DOI Listing |
J Biomed Res
September 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University; Nanjing, Jiangsu 211166, China.
Non-obstructive azoospermia (NOA), characterized by impaired spermatogenesis and the complete absence of sperm in the ejaculate, represents one of the most severe forms of male infertility. Current diagnostic strategies rely on invasive procedures such as testicular sperm extraction, underscoring the urgent need for reliable, non-invasive alternatives. In the present study, we performed untargeted metabolomic profiling of human seminal plasma to identify biomarker panels capable of stratifying azoospermia subtypes through a stepwise approach.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.
The complex interplay between circulating metabolites and immune responses, which is pivotal to disease pathophysiology, remains poorly understood and understudied in systematic research. Here, we performed a comprehensive analysis of the immune response and circulating metabolome in two Western European cohorts (534 and 324 healthy individuals) and one from sub-Saharan Africa (323 healthy donors). At the metabolic level, our analysis revealed sex-specific differences in the correlation between phosphatidylcholine and cytokine responses following ex vivo stimulation.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Microbiology, Institute of Biology, University of Kassel, 34132 Kassel, Germany.
Casein kinase 1 (CK1) family members are crucial for ER-Golgi trafficking, calcium signalling, DNA repair, transfer RNA (tRNA) modifications, and circadian rhythmicity. Whether and how substrate interactions and kinase autophosphorylation contribute to CK1 plasticity remains largely unknown. Here, we undertake a comprehensive phylogenetic, cellular, and molecular characterization of budding yeast CK1 Hrr25 and identify human CK1 epsilon (CK1ϵ) as its ortholog.
View Article and Find Full Text PDFChem Biol Interact
September 2025
Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
Humans are exposed to mixtures of chemical pollutants from various environmental sources at all stages of life. Understanding how these compounds are causally linked to population health effects is challenging because of the ethical limitations on studying controlled human exposures and the complexity of the many potential molecular mechanisms involved. We hypothesized that studies using a combination of in vivo murine stress reporter models together with non-targeted global transcriptome analysis will define the toxic mechanisms of complex chemical mixtures in a physiological context.
View Article and Find Full Text PDFBiol Psychiatry
September 2025
Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Canada; Division of Endocrinology, Children's Hospital LA, Los Angeles, CA; Department of Pediatrics, Keck Scho
Background: Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of psychosomatic disorders in adolescence and adulthood. Most investigations into biological processes that have been perturbed by ELA have profiled DNA methylation in whole blood and coalesced around perturbations of immunobiology being centrally insulted by ELA.
Methods: To identify novel molecular signatures that are enduringly perturbed by childhood maltreatment, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT, n = 7, 4M 3F) or maltreatment in infancy (MALT, n = 6, 3M 3F).