Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Factorization reduces computational complexity, and is therefore an important tool in statistical machine learning of high dimensional systems. Conventional molecular modeling, including molecular dynamics and Monte Carlo simulations of molecular systems, is a large research field based on approximate factorization of molecular interactions. Recently, the local distribution theory was proposed to factorize joint distribution of a given molecular system into trainable local distributions. Belief propagation algorithms are a family of exact factorization algorithms for (junction) trees, and are extended to approximate loopy belief propagation algorithms for graphs with loops. Despite the fact that factorization of probability distribution is the common foundation, computational research in molecular systems and machine learning studies utilizing belief propagation algorithms have been carried out independently with respective track of algorithm development. The connection and differences among these factorization algorithms are briefly presented in this perspective, with the hope to intrigue further development of factorization algorithms for physical modeling of complex molecular systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2023935 | DOI Listing |