98%
921
2 minutes
20
Mutations in the UBQLN2 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such UBQLN2-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without UBQLN2 mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2. Despite this, the relative contributions of TDP-43 and ubiquilin 2 to disease pathogenesis remain largely under-characterised, as does their relative deposition as aggregates across the central nervous system (CNS). Here we conducted multiplex immunohistochemistry of three UBQLN2 p.T487I-linked ALS/FTD cases, three non-UBQLN2-linked (sporadic) ALS cases, and 8 non-neurodegenerative disease controls, covering 40 CNS regions. We then quantified ubiquilin 2 aggregates, TDP-43 aggregates and aggregates containing both proteins in regions of interest to determine how UBQLN2-linked and non-UBQLN2-linked proteinopathy differ. We find that ubiquilin 2 aggregates that are negative for TDP-43 are predominantly small and punctate and are abundant in the hippocampal formation, spinal cord, all tested regions of neocortex, medulla and substantia nigra in UBQLN2-linked ALS/FTD but not sporadic ALS. Curiously, the striatum harboured small punctate ubiquilin 2 aggregates in all cases examined, while large diffuse striatal ubiquilin 2 aggregates were specific to UBQLN2-linked ALS/FTD. Overall, ubiquilin 2 is mainly deposited in clinically unaffected regions throughout the CNS such that symptomology in UBQLN2-linked cases maps best to the aggregation of TDP-43.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007053 | PMC |
http://dx.doi.org/10.1111/bpa.13230 | DOI Listing |
Biochem Soc Trans
August 2025
Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, 80309, U.S.A.
Ubiquilins (UBQLNs) regulate cellular protein turnover by shuttling proteins, or 'clients', to the proteasome or autophagy pathways for degradation. Of the five different UBQLN genes in humans, UBQLN2 is the most highly expressed in the nervous system and muscle tissue and has been linked to multiple neurodegenerative diseases. In particular, point mutations of UBQLN2 cause an X-linked, dominant form of amyotrophic lateral sclerosis (ALS), ALS with frontotemporal dementia (ALS/FTD), or FTD.
View Article and Find Full Text PDFAutophagy
May 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
The silkworm is an economically important insect for silk production. Its silk glands are responsible for the synthesis and secretion of silk proteins. The naked pupa (), a fibroin heavy chain mutant strain of silkworm, was found to exhibit severe atrophy, degeneration of the posterior silk gland (PSG), and abnormal secretion of fibroin proteins, thereby producing little or no silk.
View Article and Find Full Text PDFNeurobiol Dis
October 2024
Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States of America; Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America.
Mutations in UBQLN2 cause ALS and frontotemporal dementia (FTD). The pathological signature in UBQLN2 cases is deposition of highly unusual types of inclusions in the brain and spinal cord that stain positive for UBQLN2. However, what role these inclusions play in pathogenesis remains unclear.
View Article and Find Full Text PDFBrain
October 2024
School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
Brain Pathol
May 2024
School of Biological Sciences, University of Auckland, Auckland, New Zealand.
Mutations in the UBQLN2 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such UBQLN2-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without UBQLN2 mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2.
View Article and Find Full Text PDF