98%
921
2 minutes
20
Root-associated microbiomes in the rhizosphere (rhizobiomes) are increasingly known to play an important role in nutrient acquisition, stress tolerance, and disease resistance of plants. However, it remains largely unclear to what extent these rhizobiomes contribute to trait variation for different genotypes and if their inclusion in the genomic selection protocol can enhance prediction accuracy. To address these questions, we developed a microbiome-enabled genomic selection method that incorporated host SNPs and amplicon sequence variants from plant rhizobiomes in a maize diversity panel under high and low nitrogen (N) field conditions. Our cross-validation results showed that the microbiome-enabled genomic selection model significantly outperformed the conventional genomic selection model for nearly all time-series traits related to plant growth and N responses, with an average relative improvement of 3.7%. The improvement was more pronounced under low N conditions (8.4-40.2% of relative improvement), consistent with the view that some beneficial microbes can enhance N nutrient uptake, particularly in low N fields. However, our study could not definitively rule out the possibility that the observed improvement is partially due to the amplicon sequence variants being influenced by microenvironments. Using a high-dimensional mediation analysis method, our study has also identified microbial mediators that establish a link between plant genotype and phenotype. Some of the detected mediator microbes were previously reported to promote plant growth. The enhanced prediction accuracy of the microbiome-enabled genomic selection models, demonstrated in a single environment, serves as a proof-of-concept for the potential application of microbiome-enabled plant breeding for sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090461 | PMC |
http://dx.doi.org/10.1093/g3journal/jkad286 | DOI Listing |
Elife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDFJ Proteome Res
September 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States.
Retinol binding protein 4 (RBP4), the circulating carrier of retinol, complexes with transthyretin (TTR) and is a potential biomarker of cardiometabolic disease. However, RBP4 quantitation relies on immunoassays and Western blots without retinol and TTR measurement. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous absolute quantitation of circulating RBP4 and TTR is critical to establishing their biomarker potential.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
September 2025
School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.
Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.
Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.
Mol Biol Rep
September 2025
Department of Biosciences, Integral University, Kursi Road, Lucknow, 226026, India.
Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.
Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.
Mar Biotechnol (NY)
September 2025
Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China.
Epinephelus tukula is an economically important aquaculture animal, and a major parent in grouper crossbreeding. To better preserve and exploit E. tukula germplasm resources, a core collection (containing 34 individuals derived from 10 genetic groups) was first constructed based on phenotypic growth traits and whole-genome resequencing (WGS) data.
View Article and Find Full Text PDF