98%
921
2 minutes
20
We address mathematical modelling of respiratory mechanics and put forward a model based on double-exponential and fractional calculus for parameter estimation, model simulation, and evaluation based on actual data. Our model has been implemented on a publicly available executable code with adjustable parameters, making it suitable for different applications. Our analysis represents the first application of fractional calculus and double-exponential modelling to respiratory mechanics, and allows us to propose a hybrid model fitting experimental data in different ventilation modes. Furthermore, our model can be used to study the mechanical features of the respiratory system, improve the safety of ventilation techniques, reduce ventilation damages, and provide strong support for fast and adaptive determination of ventilation parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726035 | PMC |
http://dx.doi.org/10.3389/fphys.2023.1273645 | DOI Listing |
Crit Care Explor
September 2025
Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, MN.
Mean airway pressure, a monitored variable continuously available on the modern ventilator, is the pressure measured at the airway opening averaged over the time needed to complete the entire respiratory cycle. Mean airway pressure is well recognized to connect three key physiologic processes in mechanical ventilation: physical stretch, cardiovascular dynamics, and pulmonary gas exchange. Although other parameters currently employed in adults to determine "safe" ventilation are undoubtedly valuable for daily practice, all have limitations for continuous monitoring of ventilation hazard.
View Article and Find Full Text PDFJ Robot Surg
September 2025
Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UT Health San Antonio, 7703 Floyd Curl Drive, 7836, San Antonio, TX, 78229-3900, USA.
To evaluate intraoperative ventilatory mechanics during robotic-assisted hysterectomy in obese women with endometrial cancer and introduce the concept of a physiologic "ceiling effect" in respiratory strain. We conducted a retrospective cohort study of 89 women with biopsy-confirmed endometrial cancer who underwent robotic-assisted total hysterectomy between 2011 and 2015. Intraoperative ventilatory parameters, including plateau airway pressure and static lung compliance, were recorded at five-minute intervals.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2025
Department of Mathematics, Morgan State University, Baltimore, MD, USA.
Accurate modeling of lung parenchymal biomechanics is critical for understanding respiratory function and improving diagnoses. Traditional hyperelastic models capture tissue deformation but miss essential physiological interactions. This study evaluates an experimentally informed poroelastic model (Birzle's formulation) against hyperelastic-only models within a finite element framework.
View Article and Find Full Text PDFFront Physiol
August 2025
School of Mechanical Engineering and IEDT, Kyungpook National University, Daegu, Republic of Korea.
Introduction: Quantitative computed tomography (qCT) provides detailed spatial assessments of lung structure and function, while electrical impedance tomography (EIT) offers high temporal resolution for analyzing breathing patterns but lacks structural detail. This study investigates the correlation between qCT-based spatial variables and EIT-based temporal signals to elucidate the physiological relationships between these two modalities.
Methods: Six participants with asthma underwent pulmonary function tests (PFTs) before and after bronchodilator inhalation.
Gastro Hep Adv
June 2025
Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
Background And Aims: Gastroesophageal reflux (GER) is common and thought to contribute to disease progression in patients with respiratory disease. Delayed gastric emptying (DGE) can increase GER in patients with GER disease, but its effect in patients with respiratory disease, and how differing lung structure (eg, scarring, inflammation) and mechanics (eg, decreased thoracic pressure in restrictive disease, increased abdominal pressure in obstructive disease) influences this is unknown. Our aim was to understand these interrelationships and association with pulmonary function in patients with chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and non-IPF interstitial lung disease (non-IPF ILD).
View Article and Find Full Text PDF