Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The water flow energy of rivers is an important renewable and clean energy that plays a vital role in human life but is challenging to harvest at low flow velocity. This work proposes a bionic fish-shaped triboelectric-electromagnetic hybrid generator (BF-TEHG) via a two-stage swing mechanism for harvesting water flow energy. It is designed to simulate the shape of fish, effectively improving its ability to utilize low-velocity water flow energy and enabling it to operate at a minimum flow rate of 0.24 m/s. Furthermore, the impact of motion parameters on electrical performance is studied. The triboelectric and electromagnetic power-generation units can generate peak powers of 0.55 and 0.34 mW in the simulated river environments with a flow velocity of 0.98 m/s. In applications, after being immersed in water for 40 days, the BF-TEHG maintains its electrical performance without reduction, indicating excellent water immersion durability. Therefore, this work proposes an efficient strategy to harvest low-velocity water flow energy and provides an acceptable candidate for monitoring water flow conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c13690DOI Listing

Publication Analysis

Top Keywords

water flow
24
flow energy
20
flow
9
bionic fish-shaped
8
fish-shaped triboelectric-electromagnetic
8
triboelectric-electromagnetic hybrid
8
hybrid generator
8
two-stage swing
8
swing mechanism
8
water
8

Similar Publications

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Traditionally, clinical devices are designed, tested and improved through lengthy and expensive laboratory experiments and clinical trials [1]. More recently, computational methods have allowed for rapid testing, speeding up the design process and enabling far more complete searches of design space. While computational models cannot fully capture the complexities of biological systems, they provide valuable insights into crucial underlying mechanisms, such as the effects of fluid-structure interactions (FSIs).

View Article and Find Full Text PDF

Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.

Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.

View Article and Find Full Text PDF

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF