98%
921
2 minutes
20
T2* is the gold standard for iron quantification in liver as well as myocardium. In this study, we evaluated the diagnostic accuracy of myocardial T1 mapping for the assessment of myocardial iron overload (MIO) as compared to the T2* mapping in patients with thalassemia major (TM). Consecutive TM patients attending the thalassemia clinic were prospectively enrolled. Magnetic resonance imaging was performed on a 1.5 T scanner (Siemens Healthineers, Germany) using a gradient echo T2* as well as a T1 mapping (MOLLI) sequence done at a mid-ventricular short-axis single 8 mm slice of the left ventricle. Values were analyzed by manually drawing a region of interest in the mid-septum. T2*less than 20ms was used as the cutoff for significant MIO. One-hundred three patients (58 males, mean age: 17 ± 7.8 years, mean ferritin: 2009.5 µg/L) underwent cardiovascular magnetic resonance. Median T2* of myocardium was 33.45ms. Nineteen patients (18.4%) had T2*less than 20ms. T1 value was low (<850ms) in all the patients with T2* less than 20 ms. Receiver operating characteristic curve analysis revealed the best cutoff of native T1 mapping value as 850 ms which had high specificity (95.2%), sensitivity (94.2%) and negative predictive value (98.8%) for T2* less than 20ms. There was excellent agreement between T1 and T2* for diagnosis of MIO (Kappa-0.848, <0.001). We did not find any patient who had normal T1 mapping values but had MIO on T2*. T1 and T2* correlate well and normal T1 values may rule out presence of MIO. T1 mapping can act as additional imaging marker for MIO and may be helpful in centers with nonavailability or limited experience of T2*.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723946 | PMC |
http://dx.doi.org/10.1055/s-0043-1772467 | DOI Listing |
Congenital dyserythropoietic anemia type III (CDA III) is an extremely rare inherited disorder characterized by ineffective erythropoiesis, multinucleated erythroblasts in the bone marrow, and variable clinical gravity. We report the case of a 6-year-old boy, presenting with abdominal distension, failure to thrive, dark urine, intermittent itching, and recurrent infections. Physical examination revealed pallor, hepatomegaly, and splenomegaly.
View Article and Find Full Text PDFBlood
September 2025
Université Paris cité, INSERM, Institut Cochin, CNRS, Paris, France.
Hepcidin is the key hyposideremic hormone produced primarily by the liver. However, recent reports reveal extra-hepatic functional sources of hepcidin, including the intestine, the site of dietary iron absorption. To determine whether intestinal hepcidin may play a role in plasma iron lowering, we generated transgenic mice overexpressing the peptide specifically in this tissue.
View Article and Find Full Text PDFEndocrine
September 2025
Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
Am J Hematol
September 2025
Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon.
Medicine (Baltimore)
September 2025
Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey.
Excessive gestational weight gain (GWG) is associated with various adverse pregnancy outcomes, including disruption of placental function and fetal development. Iron transport through the placenta is crucial for fetal growth, and transferrin receptor 2 (TfR2) plays a key role in iron homeostasis. However, the effect of excessive GWG on placental TfR2 expression and neonatal iron parameters remains unclear.
View Article and Find Full Text PDF