Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

-deficient mice of advanced age manifest increased aortic valve peak velocity, thickened aortic valve leaflets, and excessive extracellular matrix deposition, which are key features of calcific aortic valve disease. PALMD is predominantly expressed in endothelial cells of aortic valves, and PALMD-silenced valvular endothelial cells are prone to oscillatory shear stress-induced endothelial-to-mesenchymal transition. Mechanistically, PALMD is associated with TNFAIP3 interaction protein 1, a binding protein of TNFAIP3 and IKBKG in NF-κB signaling. Loss of PALMD impairs TNFAIP3-dependent deubiquitinating activity and promotes the ubiquitination of IKBKG and subsequent NF-κB activation. Adeno-associated virus-mediated PALMD overexpression ameliorates aortic valvular remodeling in mice with calcific aortic valve disease, indicating protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714178PMC
http://dx.doi.org/10.1016/j.jacbts.2023.06.004DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
aortic valve
12
nf-κb signaling
8
valvular endothelial
8
aortic valvular
8
valvular remodeling
8
calcific aortic
8
aortic
7
palmdelphin deficiency
4
deficiency evokes
4

Similar Publications

[Mechanism and features of blood vessel damage around the gunshot wound canal].

Sud Med Ekspert

January 2025

Bureau of Forensic Medical Expertise, Saint-Petersburg, Russia.

Unlabelled: Forming wound canal is one of the main signs of gunshot wound. Its features are related to the following differential diagnostic signs: presence of gunshot wound, its intravitality, prescription, direction of projectile (bullet) movement, power of used weapon, etc.

Objective: To study the mechanisms of wound canal formation in gunshot injury, the pattern of damage to the biological tissues of its walls (mainly, blood vessels), the features of hemorrhages forming around it.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF

Abnormal expression of HLA class Ib, MICA and MICB molecules is associated with the evolution of pathological conditions and clinical settings. Here, we use RNA-sequencing data from two publicly-available projects, from different human organs and tissues and at single-cell level, to present their transcriptional expression throughout the human body, in comparison to that of HLA class Ia, HLA class II, their costimulatory molecules, and the main HLA transcription factors. Our analyses for 21 target genes reveal that median gene expression differs by orders of magnitude and that the classical/non-classical HLA distinction is not absolute for overall expression.

View Article and Find Full Text PDF