98%
921
2 minutes
20
Major bodily trauma such as cardiac surgery elicits (in response to tissue injury and other exogenous surgical factors) a whole-body inflammation response during which specialized signaling proteins called cytokines are synthesized and invoke multiple defense mechanisms. Many proinflammatory and anti-inflammatory cytokines such as interleukins (IL) and tumor necrosis factor (TNF) are produced to initiate bodily repair. Due to the adverse health consequences, including mortality, of a maladaptive cytokine response, understanding their complex dynamics using system-theoretic modeling and analysis may pave the way for controlling the inflammatory response which may eventually improve medical outcomes for patients. To this end, we use clinical data from ten patients undergoing coronary arterial bypass graft surgery to study the response of four cytokines (IL6, IL8, IL10, TNFα) and the neuroendocrine hormone cortisol. We perform deconvolution to obtain the secretory pulses underlying their pulsatile production and analyze causal interactions, mathematically uncovering some interactive relationships found in previous experimental studies.Clinical relevance- This work is a first step towards a mechanistic inference of the inflammatory response to surgery that could eventually help control the inflammatory response and could inform medical interventions to improve patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884937 | PMC |
http://dx.doi.org/10.1109/EMBC40787.2023.10339979 | DOI Listing |
Nutr J
September 2025
Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, Zhejiang Province, China.
Background: The potential association between dietary inflammatory index (DII) and colorectal cancer (CRC) risk, as well as colorectal adenomas (CRA) risk, has been extensively studied, but the findings remain inconclusive. We conducted this systematic review and dose-response meta-analysis to investigate the relationship between the DII and CRC and CRA.
Methods: We comprehensively searched the PubMed, Embase, Cochrane Library, and Web of Science databases for cohort and case-control studies reporting the relationship between DII and CRA, or between DII and CRC, as of 15 July 2025.
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFBMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFNat Microbiol
September 2025
Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.
View Article and Find Full Text PDF