98%
921
2 minutes
20
The charge density wave material 1T-TaS exhibits a pulse-induced insulator-to-metal transition, which shows promise for next-generation electronics such as memristive memory and neuromorphic hardware. However, the rational design of TaS devices is hindered by a poor understanding of the switching mechanism, the pulse-induced phase, and the influence of material defects. Here, we operate a 2-terminal TaS device within a scanning transmission electron microscope at cryogenic temperature, and directly visualize the changing charge density wave structure with nanoscale spatial resolution and down to 300 μs temporal resolution. We show that the pulse-induced transition is driven by Joule heating, and that the pulse-induced state corresponds to the nearly commensurate and incommensurate charge density wave phases, depending on the applied voltage amplitude. With our in operando cryogenic electron microscopy experiments, we directly correlate the charge density wave structure with the device resistance, and show that dislocations significantly impact device performance. This work resolves fundamental questions of resistive switching in TaS devices, critical for engineering reliable and scalable TaS electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713631 | PMC |
http://dx.doi.org/10.1038/s41467-023-44093-2 | DOI Listing |
J Phys Condens Matter
September 2025
Gunma University, 1-5-1 Tenjincho, Kiryu, 376-0052, JAPAN.
We review the fabrication and transport characterization of hexagonal boron nitride (hBN)/Bernal bilayer graphene (BLG) moiré superlattices. Due to the moiré effect, the hBN/BLG moiré superlattices exhibit an energy gap at the charge neutrality point (CNP) even in the absence of a perpendicular electric field. In BLG, the application of a perpendicular electric field tunes the energy gap at the CNP, which contrasts with single-layer graphene and is similar to the family of rhombohedral multilayer graphene.
View Article and Find Full Text PDFJ Mol Graph Model
September 2025
Department of Physics, Patan Multiple Campus, Tribhuvan University, Patandhoka, Lalitpur, 44700, Bagmati, Nepal; Department of Physics, St. Xavier's College, Maitighar, Bagmati, 44600, Kathmandu, Nepal. Electronic address:
The bioactive organosulfur compound diallyl sulfide (DAS), found in garlic and onions, was analyzed using density functional theory (DFT). DAS exhibits antimicrobial and anticancer properties, making it a potential candidate for drug discovery. Geometry optimization revealed bond lengths and angles consistent with electron delocalization.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:
Moisture-driven energy generators (MEGs) represent a renewable energy technology, yet challenges such as environmental humidity dependence and transient power generation behavior hinder their practical applications. Herein, a high-performance bilayer MEG is developed by integrating MXene-impregnated paper with a polyacrylamide (PAM) hydrogel to realize environmental tolerance and sustained power generation. Electronegative MXene and paper with 3D porous structure synergistically facilitate selective transport of positive charge, while the hydrogel serves as a water reservoir to provide a moist environment and migratory ions.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), Qingdao 266580, PR China. Electronic address:
With the trend of heavy and inferior crude oil, the design of hydrodesulfurization (HDS) catalysts with excellent activity and high active metal utilization is an inevitable trend for the upgrading of refining technology. In this study, a highly dispersed Mo catalyst confined within nitrogen-doped porous carbon (xMo@NC) was prepared using an in situ encapsulation-pyrolysis approach and used in the HDS reaction of dibenzothiophene (DBT). The methods of XRD, HRTEM, HAADF-STEM, N physisorption, FT-IR, Raman, and XPS were used to carry out thorough microstructural characterization.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
Urea electrolysis holds tremendous promise to remediate urea-containing wastewater and produce cost-effective hydrogen. Achieving highly efficient and durable electrocatalysts to drive the anodic urea oxidation reaction (UOR) is paramount to promote its practical applications. Herein, electroless deposition, a scalable, cost-effective, and energy-saving approach, is used to obtain amorphous Ni-Co-P nanoparticles.
View Article and Find Full Text PDF