Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Timely and proper suppression of inflammation can effectively reduce myocardial injury and promote the postmyocardial infarction (post-MI) wound-healing process. We have previously found that cardiac conduction regulatory RNA (CCRR), a long noncoding RNA (lncRNA) transcribed by the gene located on chromosome 9, with abundant expression in the heart, elicits antiarrhythmic effects in heart failure, and this is a continuing study on the role of CCRR in MI.

Methods: CCRR was overexpressed in CCRR transgenic mice or after injection of adeno-associated virus-9 (AAV-9). MI surgery was performed, and cardiac function was assessed in vivo by echocardiography, followed by histologic analyses. Western blot analysis and qRT-PCR were performed to investigate the effects of CCRR on macrophages, cardiomyocytes, and cardiomyocytes cocultured with macrophages. Through microarray analysis and RNA-binding protein immunoprecipitation (RIP) and other related techniques were also employed to study the effects of CCRR on Toll-like receptor (TLR)2 and TLR4.

Results: We found that CCRR level was significantly decreased with increases in proinflammatory cytokines and activation of the TLR signalling pathway in the heart of the 3-day MI mice. CCRR overexpression downregulated TLR2 and TLR4 in MI and effectively inhibited the inflammatory responses in primary cardiomyocytes and macrophages cultured under hypoxic conditions. Downregulation of CCRR induced excessive inflammatory responses by activating the TLR signalling pathway. CCRR acted by suppressing TLR2 and TLR4 to inhibit the secretion of proinflammatory factors to reduce infarct size, thereby improving cardiac function.

Conclusions: CCRR protected cardiomyocytes against MI injury by suppressing inflammatory response through targeting the TLR signalling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2023.12.003DOI Listing

Publication Analysis

Top Keywords

tlr signalling
16
signalling pathway
16
ccrr
11
postmyocardial infarction
8
inflammatory response
8
effects ccrr
8
tlr2 tlr4
8
inflammatory responses
8
lncrna ccrr
4
ccrr attenuates
4

Similar Publications

Respiratory system diseases, including infections, inflammation, fibrosis, cancer, and others, impose a substantial burden on human health worldwide. The respiratory tract is constantly exposed to external stimuli due to its connection with the outside environment. Therefore, the immune system plays a crucial role in respiratory diseases.

View Article and Find Full Text PDF

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF

Objective: This research aimed at evaluating the effectiveness and safety of nitazoxanide and escitalopram as adjuvant therapies in patients with rheumatoid arthritis (RA).

Methods: In this randomized controlled parallel study, 90 patients with active RA were randomized into three groups; group 1 (control group; n = 30) which received traditional therapy, group 2 (Nitazoxanide group; n = 30) which received traditional therapy plus 1 gm/day oral nitazoxanide, and group 3 (Escitalopram group; n = 30) which received traditional therapy plus 10 mg/day oral escitalopram for three months. At baseline and 3 months after treatment, clinical and functional assessments were done through the 28-joint count disease activity score using C-reactive protein (DAS28-CRP), the health assessment questionnaire-disability index (HAQ-DI), and the patient's global assessment (PGA).

View Article and Find Full Text PDF

PD-L1 on ex-vivo Expanded Toll-like-receptor-Bregs Prevents Allograft Rejection by Breg Viability Promotion, CD4T Effector Cell Suppression, and Tregs Induction.

Am J Transplant

September 2025

Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania

Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.

View Article and Find Full Text PDF

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF