98%
921
2 minutes
20
We previously presented a bioinformatic method for identifying diseases that arise from a mutation in a protein's low-complexity domain that drives the protein into pathogenic amyloid fibrils. One protein so identified was the tropomyosin-receptor kinase-fused gene protein (TRK-fused gene protein or TFG). Mutations in TFG are associated with degenerative neurological conditions. Here, we present experimental evidence that confirms our prediction that these conditions are amyloid-related. We find that the low-complexity domain of TFG containing the disease-related mutations G269V or P285L forms amyloid fibrils, and we determine their structures using cryo-electron microscopy (cryo-EM). These structures are unmistakably amyloid in nature and confirm the propensity of the mutant TFG low-complexity domain to form amyloid fibrils. Also, despite resulting from a pathogenic mutation, the fibril structures bear some similarities to other amyloid structures that are thought to be nonpathogenic and even functional, but there are other factors that support these structures' relevance to disease, including an increased propensity to form amyloid compared with the wild-type sequence, structure-stabilizing influence from the mutant residues themselves, and double-protofilament amyloid cores. Our findings elucidate two potentially disease-relevant structures of a previously unknown amyloid and also show how the structural features of pathogenic amyloid fibrils may not conform to the features commonly associated with pathogenicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703350 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgad402 | DOI Listing |
ACS Sens
September 2025
Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by cognitive decline and behavioral impairments, typically manifesting in the elderly and presenile population. With the rapid global aging trend, early diagnosis and treatment of AD have become increasingly urgent research priorities. The primary pathological features of AD include excessive accumulation of β-amyloid (Aβ) plaques, the formation of neurofibrillary tangles, and neuronal loss.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
iInstitut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
Cerebral Amyloid Angiopathy, a common age-related small vessel disease leading to hemorrhagic stroke, shares many characteristics with Alzheimer's disease: toxic amyloid deposits, microvascular alterations and enlarged perivascular spaces (EPVS). Together, PVS enlargement, reduced amyloid-β clearance and further accumulation form a vicious cycle underlying disease progression. Yet, the neuropathological correlates of EPVS, including the associated angioarchitecture, are poorly understood.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.
Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.
View Article and Find Full Text PDFJ Alzheimers Dis Rep
September 2025
Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
Background: The presence of the apolipoprotein E4 () allele and periodontal disease are independently correlated with higher levels of amyloid-β and inflammation in the brain, worse cognition, and Alzheimer's disease.
Objective: To assess whether the presence of the allele modifies the relationship between IgG antibodies against periodontal microorganisms and cognitive function in older adults participating in the NHANES III study.
Methods: This cross-sectional analysis was conducted among participants of the third National Health and Nutrition Examination Survey (NHANES III) (1988 to 1994), aged 60 years and older, with measurements of IgG antibodies against 19 periodontal microorganisms and alleles (N = 1644).
Open Res Eur
July 2025
REQUIMTE LAQV Porto, Porto, Porto District, Portugal.
The 2024 Nobel Prizes in Chemistry and Physics mark a watershed moment in the convergence of artificial intelligence (AI) and molecular biology. This article explores how AI, particularly deep learning and neural networks, has revolutionized protein science through breakthroughs in structure prediction and computational design. It highlights the contributions of 2024 Nobel laureates John Hopfield, Geoffrey Hinton, David Baker, Demis Hassabis, and John Jumper, whose foundational work laid the groundwork for AI tools such as AlphaFold.
View Article and Find Full Text PDF