Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Real-time breath analysis by high-resolution mass spectrometry (HRMS) is a promising method to noninvasively retrieve relevant biochemical information. In this work, we conducted a head-to-head comparison of two ionization techniques: Secondary electrospray ionization (SESI) and plasma ionization (PI), for the analysis of exhaled breath. Two commercially available SESI and PI sources were coupled to the same HRMS device to analyze breath of two healthy individuals in a longitudinal study. We analyzed 58 breath specimens in both platforms, leading to 2,209 and 2,296 features detected by SESI-HRMS and by PI-HRMS, respectively. 60% of all the mass spectral features were detected in both platforms. However, remarkable differences were noted in terms of the signal-to-noise ratio (S/N), whereby the median (interquartile range, IQR) S/N ratio for SESI-HRMS was 115 (IQR = 408), whereas for PI-HRMS it was 5 (IQR = 5). Differences in the mass spectral profiles for the same samples make the inter-comparability of both techniques problematic. Overall, we conclude that both techniques are excellent for real-time breath analysis because of the very rich mass spectral fingerprints. However, further work is needed to fully understand the exact metabolic insights one can gather using each of these platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2533/chimia.2022.127 | DOI Listing |