Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compounds with multiple photoswitching units are appealing for complex photochemical control of molecular materials and nanostructures. Herein, we synthesized novel meta- and para- connected (related to the nitrogen of the indoline) azobenzene-spiropyran dyads, in which the central benzene unit is shared by both switches. We investigated their photochemistry using static and time-resolved transient absorption spectroscopy as well as quantum chemical calculations. In the meta-compound, the individual components are photochemically decoupled due to the meta-pattern. In the para-compound the spiro-connectivity leads to a bifunctional photoswitchable system with a red-shifted absorption. The azobenzene and the spiropyran can thus be addressed and switched independently by light of appropriate wavelength. Through the different connectivity patterns two different orthogonally photoswitchable systems have been obtained which are promising candidates for complex applications of light control.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202314112DOI Listing

Publication Analysis

Top Keywords

wavelength selective
4
selective photocontrol
4
photocontrol hybrid
4
hybrid azobenzene-spiropyran
4
azobenzene-spiropyran photoswitches
4
photoswitches overlapping
4
overlapping chromophores
4
chromophores compounds
4
compounds multiple
4
multiple photoswitching
4

Similar Publications

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF

Photoremovable protecting groups (PRPGs) enable precise spatiotemporal control over molecular release and functional activation. Recent advances have introduced wavelength-selective systems for sequential deprotection, broadening applications in drug delivery, material synthesis, and photopolymerization. In parallel, PRPGs play a crucial role in photobase generators (PBGs) and photoacid generators (PAGs), enabling oxygen-tolerant, spatially controlled polymerization and depolymerization through light-induced base and acid release.

View Article and Find Full Text PDF

Optimizing bio-imaging with computationally designed polymer nanoparticles.

J Mater Chem B

September 2025

Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.

Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.

View Article and Find Full Text PDF

Bactericidal mechanisms of intense pulsed light against Salmonella Enteritidis on green Sichuan pepper.

Food Res Int

November 2025

School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China. Electronic address:

Intense pulsed light (IPL) is an emerging surface antimicrobial technology characterized by prominent efficiency but the performance in the decontamination of granular foods is yet to be improved. Using S. Enteritidis as a model bacterium, this article attempted to resolve the confusion on bactericidal mechanism of IPL treatment on spice products.

View Article and Find Full Text PDF

Introduction: Current commercial cerebral oximeters only monitor the frontal lobes, however, some cerebrovascular territories may experience ischemia while others remain well perfused. This pilot study used a novel, high-density, dual-wavelength, time-resolved functional cerebral oximeter (Kernel Flow) with 2000 channels to assess the regional differences of cerebral oxygenation (StO2) in response to hypotension across different vascular territories during shoulder surgery in the beach chair position.

Methods: Twenty-seven adult patients were monitored, recording blood pressure, heart rate, regional cerebral oxygen saturation, and other vital parameters.

View Article and Find Full Text PDF