Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Having powerful antibacterial and antioxidant effects, zinc oxide and manganese oxide nanomaterials are of great interest. Here we have synthesized manganese oxide decorated zinc oxide (MZO) nanocomposites by co-precipitation method, calcined at different temperatures (300-750 °C) and studied various properties. Here the crystalline structure of the nanocomposite and phase change of the manganese oxide are observed with calcination temperature. The average crystalline size increases and the dislocation density and microstrain decrease with the increase in calcined temperature for the same structural features. The formation of composites was confirmed by XRD pattern and SEM images. EDAX spectra proved the high purity of the composites. Here, different biological properties change with the calcination temperature for different shapes, sizes and structures of the nanocomposite. Nanomaterial calcined at 750 °C provides the best anti-microbial activity against Escherichia coli, Salmonella typhimurium, Shigella flexneri (gram-negative), Bacillus subtilis and Bacillus megaterium (gram-positive) bacterial strain at 300 µg/mL concentration. The nanomaterial with calcination temperatures of 300 °C and 450 °C provided better antioxidant properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700637PMC
http://dx.doi.org/10.1038/s41598-023-48695-0DOI Listing

Publication Analysis

Top Keywords

manganese oxide
16
calcination temperature
12
temperature structural
8
zinc oxide
8
oxide
6
phase variation
4
manganese
4
variation manganese
4
oxide mno@zno
4
mno@zno nanocomposite
4

Similar Publications

In the context of the importance of manganese β-diketonates as precursors for the preparation of manganese oxide thin films and nanostructured materials, we report synthetic protocols and pitfalls encountered in the preparation of a family of Mn(ii) complexes of two fluorinated β-diketonates, 1,1,1-trifluoroacetylacetonato- (tfac) and 1,1,1,5,5,5-hexafluoroacetylacetonato- (hfac). The synthetic conditions and crystal structures of six new complexes are reported, including a coordination polymer {K[Mn(tfac)]}, an unusual trinuclear complex Mn(tfac)(OH), and a series of mononuclear complexes with coordinated solvents tetrahydrofuran, 1,2-dimethoxyethane, water, and acetonitrile. The crystal structures of two known Mn(ii) complexes are also reported for completeness.

View Article and Find Full Text PDF

Novel plant growth-promoting endophytic bacteria, Stenotrophomonas maltophilia SaRB5, facilitate phytoremediation by plant growth and cadmium absorption in Salix suchowensis.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele

Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.

View Article and Find Full Text PDF

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF

Unlabelled: Globally agricultural sector, like cereals and especially wheat, are facing a broad range of challenges like as biotic and abiotic stresses. The main purpose of this study was to check the phytotoxic thresholds of PGPR strain, zinc manganese oxide nanocomposites (ZnO/MnO-NCs), and corncob biochar on wheat ( L.) under 20 mg L cadmium (Cd) stress.

View Article and Find Full Text PDF

Synergy in the transformation of Bisphenol A by anaerobic microorganisms and manganese dioxide: The bridging role of extracellular polymeric substances.

Bioresour Technol

August 2025

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China.

In aquatic environments, bisphenol A (BPA) can undergo natural attenuation through microbial activity and manganese oxide-mediated processes. They commonly coexist, and that suggests the need to consider potential synergies between biotic and abiotic processes in BPA attenuation. This study explored BPA transformation in the coexistence of anaerobic microorganisms and β-MnO, with emphasis on the role of extracellular polymeric substances (EPS) commonly present in dissolved organic matter.

View Article and Find Full Text PDF