98%
921
2 minutes
20
High cholesterol is an important factor inducing colorectal cancer (CRC). The study aims to determine the key genes and regulatory mechanism associated with tumor-infiltrating T cells underlying cholesterol-induced CRC. Gene expression data and clinical data from CRCS in The Cancer Genome Atlas (TCGA) were selected for differential expression and survival analysis. A total of 5,815 DEGs and 21 cholesterol-associated KEGG pathways were identified. Subsequently, 128 CRCs and 127 patients without obvious intestinal lesions were recruited to analyze the relationship between GPX3 expression, cholesterol levels, and pathologic condition. The results showed that the expression of cholesterol-related gene GPX3 was negatively associated with cholesterol level, but positively correlated with Ki-67 proliferation index in CRC. The expression of GPX3 was higher in CRC patients who were in poorly differentiated and advanced stage. In addition, a mice model of high-cholesterol diet intervention was constructed to detect the levels of cholesterol and GPX3 in the peripheral blood of mice, and it was found that the expression level of GPX3 in high-cholesterol mice was lower than that in normal diet mice. CD8+ T cells were isolated from the spleen of mice and the T cell surface receptors were detected. It was found that the expression of CD69 in CD8+ T cells of mice interfered with the high-cholesterol diet, while the expression of PD1, TIM-3, and CTLA-4 was increased. CD8+ T cells were co-cultured with MC38 cells to detect the proliferation rate of CRC cells. The results showed that the tumor cell proliferation ratio in the high cholesterol group was higher than that in the control group. Furthermore, GPX3 downstream genes associated with m6A modification and tumor-infiltrating T cells were screened, and a T cell immune-related ceRNA network was constructed. In total, 53 GPX3 downstream genes associated with m6A modification and tumor-infiltrating T cells were identified. A PPI network that contained 45 nodes and 85 interaction pairs was constructed. The ceRNA network, including 39 miRNA-target and 43 lncRNA-miRNA regulatory pairs, was constructed. In conclusion, GPX3 is a potential target for cholesterol regulation of T cell immunity in CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/neo_2023_230704N348 | DOI Listing |
Front Immunol
September 2025
Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, China.
Background And Objective: CD68 plays a crucial role in promoting phagocytosis. However, its expression level, prognostic value and the correlations with tumor-infiltrating immune cells (TIICs) or common tumor immune checkpoints (TICs) in human digestive system cancers (DSC) remain poorly understood. This study aims to investigate the expression levels, prognostic significance, and clinical implications of CD68, as well as its correlations with six TIICs and four common TICs in DSC.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
Background: Tertiary lymphoid structures (TLSs) are linked to prognosis in esophageal squamous cell carcinoma (ESCC), but whether the distribution, abundance, and maturity of TLSs affect therapeutic efficacy and prognosis in ESCC treated with neoadjuvant chemoradiotherapy plus immunotherapy (NRCI) remains unclear. We explored TLS characteristics and correlated them with patient survival.
Methods: A total of 157 resectable ESCC patients treated with neoadjuvant therapy between September 2020 and May 2023 were divided into NRCI (n=49) and neoadjuvant chemoimmunotherapy (NCI, n=108) groups.
Adv Sci (Weinh)
September 2025
Department of Pharmaceutics, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), State Key Laboratory of Discovery and Utilization of Fun
The effectiveness of antitumor immunotherapy is limited to immune cell infiltration into solid tumors, primarily via T-cell migration through tumor blood vessels. This study introduces a multifunctional nitric oxide (NO)-driven hollow gold Janus nanomotor (HAM) designed to promote tumor blood vessel normalization and increase T-cell infiltration, thereby enhancing the immune response against tumors. It is revealed that self-generated NO facilitates the penetration of HAM into tumors and increases pericyte coverage of blood vessels, thereby enhancing intratumoral T-cell infiltration.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Low density lipoprotein receptor-related protein 2 (LRP2) is a 600 kilodalton multi-ligand endocytic membrane receptor expressed in several cell types during fetal development, including neuroepithelial cells, and in select absorptive epithelial cells in the adult. In epithelial cancers, LRP2 expression is associated with a differentiated tumor cell state and better prognosis. In previous work, we found that while LRP2 is not expressed in benign naevi, it is frequently acquired in melanoma.
View Article and Find Full Text PDFEur J Pharmacol
September 2025
Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. Electronic address:
Background: Immunotherapy (IO) combined with tyrosine kinase inhibitors (TKI) are now first-line therapy for advanced renal cell carcinoma (RCC), though reliable predictive biomarkers remain elusive. Recent evidence demonstrates that karyopherin α2 subunit (KPNA2), a nuclear transport regulator, plays key roles in tumorigenesis and therapy resistance.
Methods: Two cohorts were analyzed: an institutional cohort of metastatic RCC patients (ZS-MRCC) and the phase III JAVELIN Renal 101 trial cohort.