Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The expression of mechanoresponsive nonmuscle myosin II (NMII)C is found to be inducible during tumor progression, but its mechanism is yet to be explored. Here, we report a group of microRNAs (mmu-miR-200a-5p, mmu-miR-532-3p, mmu-miR-680, and mmu-miR-1901) can significantly repress the expression of nonmuscle myosin IIC (NMIIC). Interestingly, these microRNAs have both canonical and non-canonical binding sites at 3UTR and coding sequence (CDS) of NMIIC's heavy chain (HC) mRNA. Each of the miRNA downregulates NMHC-IIC to a different degree as assessed by dual-luciferase and immunoblot analyses. When we abolish the complementary base pairing at canonical binding site, mmu-miR-532-3p can still bind at non-canonical binding site and form Argonaute2 (AGO2)-miRNA complex to downregulate the expression of NMIIC. Modulating the expression of NMIIC by miR-532-3p in mouse mammary tumor cells, 4T1, increases its tumorigenic potential both and . Together, these studies provide the functional role of miRNA's non-canonical binding mediated NMIIC regulation in tumor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690570PMC
http://dx.doi.org/10.1016/j.isci.2023.108384DOI Listing

Publication Analysis

Top Keywords

non-canonical binding
16
nonmuscle myosin
12
expression nonmuscle
8
myosin iic
8
binding site
8
expression nmiic
8
tumor cells
8
expression
5
binding
5
nmiic
5

Similar Publications

Triple-negative breast cancer (TNBC) presents a formidable therapeutic challenge due to its aggressive behavior, molecular heterogeneity, and lack of actionable targets. This study identifies activation-induced cytidine deaminase (AID) as a pivotal epigenetic driver reprogramming the tumor microenvironment (TME) via non-canonical regulation of NOTCH signaling. Mechanistically, AID recruits histone acetyltransferase 1 (HAT1) to form a chromatin-remodeling complex that binds the JAG1 promoter region (-1.

View Article and Find Full Text PDF

E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.

View Article and Find Full Text PDF

Clusters of deep intronic RbFox motifs embedded in large assembly of splicing regulators sequences regulate alternative splicing.

PLoS Genet

September 2025

Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.

The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) therapies are the most recommended first-line treatment for wild-type unresectable metastatic colorectal cancer (CRC) according to the European Society for Medical Oncology guidelines. However, primary resistance renders this treatment ineffective for almost 40% of patients. Our previous work identified Aurora kinase A (AURKA) as a key resistance driver through non-canonical, Hippo-independent Yes-associated protein 1 (YAP1) activation.

View Article and Find Full Text PDF

Thyroid hormones (THs) are essential regulators of metabolism, homeostasis, and development in metazoans. The canonical genomic pathway involves THs binding to nuclear thyroid hormone receptors (NTHRs), which modulate gene expression in vertebrates. In contrast, non-genomic pathways involve THs interacting with membrane-bound or cytoplasmic receptors.

View Article and Find Full Text PDF