98%
921
2 minutes
20
Neonatal rodents undergo anesthesia for numerous procedures and for euthanasia by anesthetic overdose. However, data regarding whether neonatal anesthesia is humane are limited. Hypothermia (cryoanesthesia) is the most commonly used anesthetic protocol for neonatal rats 10 d of age or younger. However, hypothermia has recently been restricted in several countries due to perceived painful effects, including pain on rewarming. Minimizing the potential pain and distress of neonates in research is imperative, although very challenging. Traditional validated and nonvalidated behavioral and physiologic outcome measures used for adult rats undergoing anesthesia are unsuitable for evaluating neonates. Therefore, we investigated the effects of several anesthetic methods on neonatal rats by using the innovative objective approaches of noninvasive ultrasonic vocalizations and more invasive neuroendocrine responses (i. e., serum corticosterone, norepinephrine, glucose). Our results show that hypothermia leads to heightened acute distress in neonatal rats as indicated by prolonged recovery times, increased duration of vocalizations, and elevated corticosterone levels, as compared with neonates undergoing inhalational anesthesia. We demonstrate that inhalational anesthesia is preferable to cryoanesthesia for neonatal rats, and researchers using hypothermia anesthesia should consider using inhalational anesthesia as an alternative method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844739 | PMC |
http://dx.doi.org/10.30802/AALAS-JAALAS-23-000008 | DOI Listing |
J Physiol
September 2025
Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, USA.
Diagnoses of prediabetes and metabolic syndromes, such as metabolic-associated steatotic liver disease (MASLD), are increasing at an alarming rate worldwide, often simultaneously. A significant consequence of these is high risk of cardiovascular disease, highlighting the need for cardiac-specific therapeutics for intervention during the prediabetic stage. Recent studies have demonstrated that chemogenetic activation of the cardiac parasympathetic system through hypothalamic oxytocin (OXT) neurons provides cardioprotective effects in heart disease models by targeting excitatory neurotransmission to brainstem cardiac vagal neurons.
View Article and Find Full Text PDFNeurol Res
September 2025
Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Objectives: This study aimed to investigate the effects of repeated exposure to sevoflurane as an anesthetic agent during various developmental stages, namely neonatal, preadolescent, and adult, on behavioral, synaptic, and neuronal plasticity in male and female Wistar rats.
Methods: Rats were exposed to sevoflurane during three developmental stages: neonatal (PN7), pre-adolescence (PN28), and adulthood (PN90). Behavioral performance was evaluated with the Morris Water Maze.
Eur J Neurosci
September 2025
Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan.
Pelvic visceromotor functions such as micturition are regulated by coordinated autonomic and somatic motor pathways from the central nervous system. The parasympathetic system induces detrusor muscle contraction while the somatic system facilitates relaxation of the external urethral sphincter, ensuring synchronized and efficient bladder emptying during the voiding process. This study explores the relationship between Barrington's nucleus corticotropin-releasing hormone (CRH)-ergic projections and the formation of perineural nets (PNNs) among spinal motoneurons, particularly parasympathetic preganglionic neurons in the intermediolateral nucleus (IML) and Onuf's nucleus during the maturation of the neural circuitry controlling pelvic visceromotor functions.
View Article and Find Full Text PDFBrain Behav Immun
October 2025
Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA. Electronic address:
Biochem Pharmacol
September 2025
Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El
Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.
View Article and Find Full Text PDF