Label-free SERS assay combined with multivariate spectral data analysis for lamotrigine quantification in human serum.

Mikrochim Acta

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Considering the need for a more time and cost-effective method for lamotrigine (LTG) detection in clinics we developed a fast and robust label-free assay based on surface-enhanced Raman scattering (SERS) for LTG quantification from human serum. The optimization and application of the developed assay is presented  showing the: (i) exploration of different methods for LTG separation from human serum; (ii) implementation of a molecular adsorption step on an ordered Au nanopillar SERS substrate; (iii) adaptation of a fast scanning of the SERS substrate, performed with a custom-built compact Raman spectrometer; and (iv) development of LTG quantification methods with univariate and multivariate spectral data analysis. Our results showed, for the first time, the SERS-based characterization of LTG and its label-free identification in human serum. We found that combining a miniaturized solid phase extraction, as sample pre-treatment with the SERS assay, and using a multivariate model is an optimal strategy for LTG quantification in human serum in a linear range from 9.5 to 75 μM, with LoD and LoQ of 3.2 μM and 9.5 μM, respectively, covering the suggested clinical therapeutic window. We also showed that the developed assay allowed for quantifying LTG from human serum in the presence of other drugs, thereby demonstrating the robustness of label-free SERS. The sensing approach and instrumentation can be further automated and integrated in devices that can advance the drug monitoring in real clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689517PMC
http://dx.doi.org/10.1007/s00604-023-06085-3DOI Listing

Publication Analysis

Top Keywords

human serum
24
quantification human
12
ltg quantification
12
label-free sers
8
sers assay
8
multivariate spectral
8
spectral data
8
data analysis
8
sers substrate
8
ltg
7

Similar Publications

Acute Myeloid Leukemia (AML) is a heterogeneous hematological malignancy with an altered bone marrow microenvironment sheltering leukemic stem cells (LSCs). LSCs are characterized as self-renewing and highly proliferative cancer stem cells and accumulate abnormal genetic and epigenetic factors contributing to their uncontrolled proliferation. Chromosomal translocation t(9;11)(p22;q23) forms fusion oncoprotein, MLL-AF9, and regulates the transcription factor, C-Myb, which is highly expressed in AML.

View Article and Find Full Text PDF

Introduction: Toxoplasma gondii is a zoonotic parasite of significant public health concern, particularly in regions where consumption of undercooked meat is common. Despite the importance of sheep as a potential source of human infection, understanding of T. gondii seroprevalence and tissue distribution in sheep in the Red Sea State in Sudan remains limited.

View Article and Find Full Text PDF

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) is vital for effective optimization of pharmacological treatments. In this study, we engineered a chromatography column that is sensitive to temperature fluctuations, thereby enabling safe and straightforward TDM without relying on organic solvents. Silica beads were modified by applying poly(N-isopropylacrylamide) (PNIPAAm) hydrogels, using a condensation reaction to modify the initiator, followed by radical polymerization to integrate the PNIPAAm hydrogel.

View Article and Find Full Text PDF

Background: Improving the efficacy of anti-programmed death 1 (PD-1) monoclonal antibody (mAb) therapy remains a major challenge for cancer immunotherapy in non-small cell lung cancer (NSCLC). Gut microbial metabolites can influence immunotherapy efficacy.

Methods: ELISA was used to compare the serum 5-hydroxyindoleacetic acid (5-HIAA) level in patients with NSCLC.

View Article and Find Full Text PDF