Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Technological innovations that improve the speed, scale, reproducibility, and accuracy of monitoring surveys will allow for a better understanding of the global decline in tropical reef health. The DiveRay, a diver-operated hyperspectral imager, and a complementary machine learning pipeline to automate the analysis of hyperspectral imagery were developed for this purpose. To evaluate the use of a hyperspectral imager underwater, the automated classification of benthic taxa in reef communities was tested. Eight reefs in Guam were surveyed and two approaches for benthic classification were employed: high taxonomic resolution categories and broad benthic categories. The results from the DiveRay surveys were validated against data from concurrently conducted photoquadrat surveys to determine their accuracy and utility as a proxy for reef surveys. The high taxonomic resolution classifications did not reliably predict benthic communities when compared to those obtained by standard photoquadrat analysis. At the level of broad benthic categories, however, the hyperspectral results were comparable to those of the photoquadrat analysis. This was particularly true when estimating scleractinian coral cover, which was accurately predicted for six out of the eight sites. The annotation libraries generated for this study were insufficient to train the model to fully account for the high biodiversity on Guam's reefs. As such, prediction accuracy is expected to improve with additional surveying and image annotation. This study is the first to directly compare the results from underwater hyperspectral scanning with those from traditional photoquadrat survey techniques across multiple sites with two levels of identification resolution and different degrees of certainty. Our findings show that dependent on a well-annotated library, underwater hyperspectral imaging can be used to quickly, repeatedly, and accurately monitor and map dynamic benthic communities on tropical reefs using broad benthic categories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689744PMC
http://dx.doi.org/10.1038/s41598-023-48263-6DOI Listing

Publication Analysis

Top Keywords

underwater hyperspectral
12
broad benthic
12
benthic categories
12
hyperspectral imaging
8
hyperspectral imager
8
high taxonomic
8
taxonomic resolution
8
benthic communities
8
photoquadrat analysis
8
hyperspectral
7

Similar Publications

Immersion factors of two TriOS RAMSES ARC series radiance sensors were determined using a method adapted from Zibordi, "Immersion factor of in-water radiance sensors: assessment for a class of radiometers," J. Atmos. Ocean Tech.

View Article and Find Full Text PDF

In situ spectral reflectance initially captured at high spatial resolution with underwater hyperspectral imaging (UHI) is effective for classification and quantification in oceanic biogeochemical studies; however, the measured spectral radiance is rarely used as an absolute quantity due to challenges in calibration of UHI instruments. In this paper, a commercial UHI instrument was calibrated for radiometric flat field response and pixelwise immersion effect to support in situ measurement of absolute spectral radiance. The radiometric and immersion factor calibrations of the UHI instrument were evaluated quantitatively through comparative experiments with a spectroradiometer and a spectrometer.

View Article and Find Full Text PDF

Crustose coralline algae (CCA) are a highly diverse group of habitat-forming, calcifying red macroalgae (Rhodophyta) with unique adaptations to diverse irradiance regimes. A distinctive CCA phenotype adaptation, which allows them to maximize photosynthetic performance in low light, is their content of a specific group of light-harvesting pigments called phycobilins. In this study, we assessed the potential of noninvasive hyperspectral imaging (HSI) in the visible spectrum (400-800 nm) to describe the phenotypic variability in phycobilin content of an Antarctic coralline, Tethysphytum antarcticum (Hapalidiales), from two distinct locations.

View Article and Find Full Text PDF

The safeguarding of scarce water resources is critically dependent on continuous water quality monitoring. Traditional methods like satellite imagery and automated underwater observation have limitations in cost-efficiency and frequency. Addressing these challenges, a ground-based remote sensing system for the high-frequency, real-time monitoring of water parameters has been developed.

View Article and Find Full Text PDF

The island of Guam in the west Pacific has seen a significant decrease in coral cover since 2013. Lafac Bay, a marine protected area in northeast Guam, served as a reference site for benthic communities typical of forereefs on the windward side of the island. The staghorn coral Acropora abrotanoides is a dominant and characteristic ecosystem engineer of forereef communities on exposed shorelines.

View Article and Find Full Text PDF