98%
921
2 minutes
20
Skin cutaneous melanoma (SKCM) constitutes a malignant cutaneous neoplasm characterized by an exceedingly unfavorable prognosis. Over the past years, necroptosis, a manifestation of inflammatory programmed cell demise, has gained substantial traction in its application. However, a conclusive correlation between the expression of necroptosis-related genes (NRGs) and SKCM patient's prognosis remains elusive. In this endeavor, we have undertaken an integrative analysis of genomic data, aiming to provide an exhaustive evaluation of the intricate interplay between melanoma necroptosis and immune-infiltration nuances within the tumor microenvironment. Through meticulous scrutiny, we have endeavored to discern the prognostic potency harbored by individual necroptosis-associated genes. Our efforts culminated in the establishment of a risk stratification framework, allowing for the appraisal of necroptosis irregularities within each afflicted cutaneous melanoma patient. Notably, those SKCM patients classified within the low-risk cohort exhibited a markedly elevated survival quotient, in stark contrast to their high-risk counterparts (p < 0.001). Remarkably, the low-risk cohort not only displayed a more favorable survival rate but also exhibited an enhanced responsiveness to immunotherapeutic interventions, relative to their high-risk counterparts. The outcomes of this investigation proffer insights into a conceivable mechanistic underpinning linking necroptosis-related attributes to the intricacies of the tumor microenvironment. This prompts a conjecture regarding the plausible association between necroptosis characteristics and the broader tumor microenvironmental milieu. However, it is imperative to emphasize that the pursuit of discerning whether the expression profiles of NRG genes can indeed be regarded as viable therapeutic targets necessitates further comprehensive exploration and scrutiny. In conclusion, our study sheds light on the intricate interrelationship between necroptosis-related factors and the tumor microenvironment, potentially opening avenues for therapeutic interventions. However, the prospect of translating these findings into clinical applications mandates rigorous investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689831 | PMC |
http://dx.doi.org/10.1038/s41598-023-48374-0 | DOI Listing |
JAMA Dermatol
September 2025
Department of Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
Importance: Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased.
Objectives: To develop an improved melanoma risk prediction tool for invasive melanoma.
Inflamm Res
September 2025
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.
View Article and Find Full Text PDFInt J Dermatol
July 2025
Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Ann Surg
September 2025
Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Objective: We hypothesized that anatomic location of metastatic melanoma is associated with the degree of therapeutic response to TVEC.
Summary: TVEC is the first FDA-approved injectable oncolytic virus to treat unresectable stage IIIB-IV metastatic melanoma patients. Previously published real-world outcomes demonstrated a 39% complete response (CR) rate to TVEC.
J Surg Oncol
September 2025
Cumming School of Medicine, University of Calgary, Calgary, Canada.
Superparamagnetic iron oxide (SPIO) tracer is a potential option for sentinel lymph node biopsy (SLNB), though its application in melanoma remains minimally explored. This systematic review evaluated the use of SPIO tracer compared to the standard approach for SLNB in melanoma. SPIO demonstrated comparable efficacy and detection rate to the gold standard, with a sensitivity of 94%.
View Article and Find Full Text PDF