98%
921
2 minutes
20
G-protein-coupled receptors (GPCRs) make up the largest superfamily of human membrane proteins and represent primary targets of ∼1/3 of currently marketed drugs. Allosteric modulators have emerged as more selective drug candidates compared with orthosteric agonists and antagonists. However, many X-ray and cryo-EM structures of GPCRs resolved so far exhibit negligible differences upon the binding of positive and negative allosteric modulators (PAMs and NAMs). The mechanism of dynamic allosteric modulation in GPCRs remains unclear. In this work, we have systematically mapped dynamic changes in free energy landscapes of GPCRs upon binding of allosteric modulators using the Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy prOfiling Workflow (GLOW). GaMD simulations were performed for a total of 66 μs on 44 GPCR systems in the presence and absence of the modulator. DL and free energy calculations revealed significantly reduced dynamic fluctuations and conformational space of GPCRs upon modulator binding. While the modulator-free GPCRs often sampled multiple low-energy conformational states, the NAMs and PAMs confined the inactive and active agonist-G-protein-bound GPCRs, respectively, to mostly only one specific conformation for signaling. Such cooperative effects were significantly reduced for binding of the selective modulators to "non-cognate" receptor subtypes. Therefore, GPCR allostery exhibits a dynamic "conformational selection" mechanism. In the absence of available modulator-bound structures as for most current GPCRs, it is critical to use a structural ensemble of representative GPCR conformations rather than a single structure for compound docking ("ensemble docking"), which will potentially improve structure-based design of novel allosteric drugs of GPCRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685416 | PMC |
http://dx.doi.org/10.1021/jacsau.3c00503 | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDFNat Prod Res
March 2025
Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Safat, Kuwait.
The effects of apigenin, a plant flavonoid, were investigated using the two-electrode voltage-clamp technique on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7-nACh) receptor expressed in oocytes. Currents induced by ACh (100 μM) were reversibly potentiated by apigenin with an EC value of 5.4 µM in a voltage-independent manner.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.
Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.
Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.
View Article and Find Full Text PDFDrug Discov Today
September 2025
Department of Pharmaceutical and Artificial-Intelligence Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Cen
The landscape of allosteric drug discovery is undergoing a transformative shift, driven by the integration of three computational approaches: machine learning (ML), molecular dynamics (MD) simulations, and network theory. ML identifies potential allosteric sites from multidimensional biological datasets; MD simulations, empowered by enhanced sampling algorithms, reveal transient conformational states; and network analyses uncover communication pathways, further aiding in site identification. Their synergy enables rational allosteric modulator design.
View Article and Find Full Text PDF