Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The acoustic response of microbubbles (MBs) depends on their resonance frequency, which is dependent on the MB size and shell properties. Monodisperse MBs with tunable shell properties are thus desirable for optimizing and controlling the MB behavior in acoustics applications. By utilizing a novel microfluidic method that uses lipid concentration to control MB shrinkage, we generated monodisperse MBs of four different initial diameters at three lipid concentrations (5.6, 10.0, and 16.0 mg/mL) in the aqueous phase. Following shrinkage, we measured the MB resonance frequency and determined its shell stiffness and viscosity. The study demonstrates that we can generate monodisperse MBs of specific sizes and tunable shell properties by controlling the MB initial diameter and aqueous phase lipid concentration. Our results indicate that the resonance frequency increases by 180-210% with increasing lipid concentration (from 5.6 to 16.0 mg/mL), while the bubble diameter is kept constant. Additionally, we find that the resonance frequency decreases by 260-300% with an increasing MB final diameter (from 5 to 12 μm), while the lipid concentration is held constant. For example, our results depict that the resonance frequency increases by ∼195% with increasing lipid concentration from 5.6 to 16.0 mg/mL, for ∼11 μm final diameter MBs. Additionally, we find that the resonance frequency decreases by ∼275% with increasing MB final diameter from 5 to 12 μm when we use a lipid concentration of 5.6 mg/mL. We also determine that MB shell viscosity and stiffness increase with increasing lipid concentration and MB final diameter, and the level of change depends on the degree of shrinkage experienced by the MB. Specifically, we find that by increasing the concentration of lipids from 5.6 to 16.0 mg/mL, the shell stiffness and viscosity of ∼11 μm final diameter MBs increase by ∼400 and ∼200%, respectively. This study demonstrates the feasibility of fine-tuning the MB acoustic response to ultrasound by tailoring the MB initial diameter and lipid concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c01599DOI Listing

Publication Analysis

Top Keywords

lipid concentration
36
resonance frequency
24
final diameter
20
shell properties
16
160 mg/ml
16
monodisperse mbs
12
increasing lipid
12
lipid
10
concentration
10
size shell
8

Similar Publications

Evaluation of the effects of bovine lactoferrin on the membrane of human erythrocytes.

Biochim Biophys Acta Biomembr

September 2025

Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil. Electronic address:

Lactoferrin (Lf) is an iron-binding glycoprotein involved in various biological functions, including iron metabolism and immune response. Bovine lactoferrin (bLf) has gained attention due to its potential therapeutic applications. This study investigates the effects of bLf on human erythrocyte membranes, focusing on Na,K-ATPase (NKA) modulation.

View Article and Find Full Text PDF

Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca cross-linked PG/PG pairs and PG/3adLPG ion pairs.

View Article and Find Full Text PDF

Heart DHA turnover is faster in female compared to male ALA- and EPA-fed mice.

J Lipid Res

September 2025

Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8. Electronic address:

Young females have higher circulating docosahexaenoic acid (DHA) levels than males, though the metabolic basis remains incompletely understood. Building on previous findings demonstrating higher hepatic synthesis of the DHA precursor, docosapentaenoic acid (DPAn-3) in males, this study extends the investigation to n-3 PUFA turnover in extrahepatic tissues of male and female C57BL/6N mice using compound-specific isotope analysis (CSIA). Animals were fed a 12-week diet enriched in either α-linolenic acid (ALA), eicosapentaenoic acid (EPA), or DHA, starting with a 4-week phase containing low carbon-13 (δC)-n-3 PUFA, followed by an 8-week phase with high δC-n-3 PUFA (n = 4 per diet, time point, sex).

View Article and Find Full Text PDF

Hydrodynamic focusing to synthesize lipid-based nanoparticles: Computational and experimental analysis of chip design and formulation parameters.

J Control Release

September 2025

Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M

Microfluidic hydrodynamic focusing (HF) has emerged as a powerful platform for the controlled synthesis of lipid nanoparticles (LNPs) and liposomes, offering superior precision, reproducibility, and scalability compared to traditional batch methods. However, the impact of HF inlet configuration and channel geometry on nanoparticle formation remains poorly understood. In this study, we present a comprehensive experimental and computational analysis comparing 2-inlet (2-way) and 4-inlet (4-way) HF designs across various sheath inlet angles (45°, 90°, 135°) and cross-sectional geometries (square vs.

View Article and Find Full Text PDF

This study evaluated the effects of a 120-d dietary supplementation with unsaturated fatty acids from soybean grain and flaxseed on oocyte quality, in vitro embryo quality and production, and the metabolic profiles of blood and follicular fluid in Holstein heifers. Twenty-four heifers were assigned to the following treatments: a control diet (CON) and diets supplemented with whole raw soybeans (WRS) or flaxseed (FLX), both formulated to increase ether extract content to approximately 4.5 % dry matter (DM).

View Article and Find Full Text PDF