98%
921
2 minutes
20
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106658 | PMC |
http://dx.doi.org/10.1007/s10071-023-01833-7 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611.
The origin and phylogenetic distribution of symbiotic associations between nodulating angiosperms and nitrogen-fixing bacteria have long intrigued biologists. Recent comparative evolutionary analyses have yielded alternative hypotheses: a multistep pathway of independent gains and losses of root nodule symbiosis vs. a single gain followed by numerous losses.
View Article and Find Full Text PDFGeobiology
September 2025
Dipartimento di Scienze, Università di Roma Tre, Roma, Italy.
Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.
View Article and Find Full Text PDFElife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFCurr Biol
July 2025
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address: jinxianliu@gmail
Determination of evolutionary mechanisms underlying innovative traits is crucial for understanding the vast diversity of species and phenotypes. Given their respiratory physiologies, fishes are compelling subjects for evolutionary analysis of the hemoprotein-based oxygen-transport systems. Asian noodlefishes (Osmeriformes: Salangidae) and Antarctic icefishes (Notothenioidei: Channichthyidae) are examples of fish clades that generally do not express myoglobin or hemoglobin.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
We present a self-consistent algorithm for optimal control simulations of many-body quantum systems. The algorithm features a two-step synergism that combines discrete real-time machine learning (DRTL) with Quantum Optimal Control Theory (QOCT) using the time-dependent Schrödinger equation. Specifically, in step (1), DRTL is employed to identify a compact working space (i.
View Article and Find Full Text PDF