98%
921
2 minutes
20
Nematodes represent >3/5 of the abundance of the world's metazoans and usually account for nearly 90% of the total benthic fauna, playing a key ecological role in the benthic ecosystem functioning on a global scale. These small metazoans include a relevant number of microscopic predators and, in turn, are the most abundant preys of macro-megafauna and fish juveniles thus playing a key role in marine food webs. Here, using two independent approaches, we test the bioaccumulation in marine nematodes of several heavy metals present in contaminated sediments. We report here that nematodes, despite their short life cycle and small size, bioaccumulate significantly heavy metals. Bioaccumulation increases from deposit feeders and microalgal grazers to predators of microbes and other tiny metazoans. These results suggest that nematodes also contribute to their biomagnification along the food webs and can contribute to increase the transfer of contaminants from the sediments to larger organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682414 | PMC |
http://dx.doi.org/10.1038/s42003-023-05539-x | DOI Listing |
Brain Behav
September 2025
Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong Province, China.
Background: The susceptibility values of the basal ganglia reflect the health status of these nuclei. We aimed to explore the associations between various demographic characteristics, lifestyle factors, and biological factors that have the potential to contribute to magnetic susceptibility and investigate the comprehensive impact of these multiple factors on basal ganglia susceptibility values.
Methods: We included 25,980 participants from the UK Biobank.
Environ Monit Assess
September 2025
Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.
Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDF