98%
921
2 minutes
20
Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202300830RR | DOI Listing |
Lab Chip
September 2025
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA.
CRISPR technology offers an entirely new approach to therapeutic development because it can target specific nucleotide sequences with high specificity, however, preclinical animal models are not useful for evaluation of their efficacy and potential off-target effects because of high gene sequence variations between animals and humans. Here, we explored the potential of using the CRISPR effector Cas13 to develop a new therapeutic approach for influenza A virus (IAV) infections based on its ability to specifically and robustly cleave single-strand viral RNA using a complementary CRISPR RNA (crRNA). We engineered crRNAs to target highly conserved regions in the IAV genome to create a potential pan-viral treatment strategy.
View Article and Find Full Text PDFToxicol Mech Methods
September 2025
Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
Fluoropyrimidines are a class of chemotherapy drugs used to treat various solid tumors. 5-Fluorouracil (5-FU) an antimetabolite in the fluoropyrimidine family, which has shown remarkable efficacy against a variety of solid tumors, is a crucial medication in the treatment of cancer. However, severe organ toxicities frequently restrict its therapeutic potential.
View Article and Find Full Text PDFJTCVS Open
August 2025
Division of Congenital Heart Surgery, Department of Surgery, Texas Children's Hospital Heart Center and Baylor College of Medicine, Houston, Tex.
Objective: Pediatric pulmonary vein stenosis (PVS) is associated with substantial morbidity and mortality for the subset of patients with recurrent or progressive disease. The molecular mechanisms underlying the development and trajectory of PVS remain unclear. This study characterizes the transcriptome of clinical and phenotypic subtypes of PVS.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.
Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America.
While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients.
View Article and Find Full Text PDF