A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Extending the Operational Lifetime of Electrochemiluminescence Devices by Installing a Floating Bipolar Electrode. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrochemiluminescence (ECL) holds significant promise for the development of cost-effective light-emitting devices because of its simple structure. However, conventional ECL devices (ECLDs) have a major limitation of short operational lifetimes, rendering them impractical for real-world applications. Typically, the luminescence of these devices lasts no longer than a few minutes during operation. In the current study, a novel architecture is provided for ECLDs that addresses this luminescence lifespan issue. The device architecture features an ECL active layer between two coplanar driving electrodes and a third floating bipolar electrode. The inclusion of the floating bipolar electrode enables modulating the electrical-field distribution within the active layer when a bias is applied between the driving electrodes. This, in turn, enables the use of opaque yet electrochemically stable noble metals as the driving electrodes while allowing ECL light to escape through the transparent floating bipolar electrode. A significant extension on operational lifetime is achieved, defined as the time required for the initial luminance (>100 cd m) to decrease by 50%, surpassing 1 h. This starkly contrasts the short lifetime (<1 min) attained by ECLDs in a conventional sandwich-type architecture with two transparent electrodes. These results provide simple strategies for developing durable ECL-based light-emitting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202307190DOI Listing

Publication Analysis

Top Keywords

floating bipolar
16
bipolar electrode
16
driving electrodes
12
operational lifetime
8
active layer
8
extending operational
4
lifetime electrochemiluminescence
4
devices
4
electrochemiluminescence devices
4
devices installing
4

Similar Publications