Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glycosylation of proteins is an essential feature of extracellular vesicles (EVs). However, while the glycosylation heterogeneity focusing on specific EV subtypes and proteins will better reveal the functions of EVs, the determination of their specific glycans remains highly challenging. Herein, we report a method of protein-specific glycan recognition using DNA-encoded affinity ligands to label proteins and glycans. Manipulating the sequences of DNA tags and employing a DNA logic gate to trigger a spatial proximity-induced DNA replacement reaction enabled the release of glycan-representative DNA strands for the quantitative detection of multiple glycoforms. After size-dependent isolation of EV subgroups and decoding of three typical glycoforms on the epithelial growth factor receptor (EGFR), we found that the different EV subgroups of the EGFR glycoprotein varied with respect to glycan types and abundance. The distinctive glycoforms of the EV subgroups could interfere with the EGFR-related EV functions. Furthermore, the sialylation of small EVs possessed the potential as a cancer biomarker. This method provides new insights into the role of protein-specific glycoforms in EV functions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c01501DOI Listing

Publication Analysis

Top Keywords

glycosylation heterogeneity
8
extracellular vesicles
8
dna-encoded spatial
4
spatial proximity
4
proximity replaced
4
replaced glycoprotein
4
glycoprotein analysis
4
analysis reveals
4
reveals glycosylation
4
heterogeneity extracellular
4

Similar Publications

Congenital disorders of glycosylation (CDG) are a heterogeneous group of inherited metabolic diseases (IMD) characterized by defects in the synthesis and modification of glycoproteins and glycolipids. One of these disorders is ATP6AP1-CDG, a rare X-linked disease with approximately 30 cases reported so far. Symptoms associated with ATP6AP1-CDG include immunodeficiency, liver dysfunction, and neurological manifestations.

View Article and Find Full Text PDF

Naturally acquired promoter variation influences Streptococcus pneumoniae infection outcomes.

Cell Host Microbe

August 2025

Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:

Streptococcus pneumoniae colonizes human airways, where it acquires sugars from glycosylated mucins using glycoside hydrolases and sugar transport systems. This study identifies widespread nucleotide sequence variation in the promoter of a pneumococcal operon encoding a glycan scavenging system. We identify 78 promoter sequence patterns across 21,155 genomes, with variation clustered within a stretch of adenines, where mutations accumulate via strand slippage during DNA replication.

View Article and Find Full Text PDF

Addressing tumor heterogeneity in breast cancer (BC) research is crucial, given the distinct subtypes like triple-negative (TN), luminal A/B (LAB), and HER2, requiring precise differentiation for effective treatment. This study introduces a non-invasive method by analyzing post-translationally modified proteins in plasma extracellular vesicles (EVs), which play a role in immune regulation and intercellular communication. Examining modifications like phosphorylation, acetylation and glycosylation in EVs provides insights into BC dynamics.

View Article and Find Full Text PDF

Advancement in Clinical Glycomics and Glycoproteomics for Congenital Disorders of Glycosylation: Progress and Challenges Ahead.

Biomedicines

August 2025

Special Protein Unit, Specialized Diagnostic Centre, Institute for Medical Research, National Institutes of Health, Jalan Pahang, Kuala Lumpur 50588, Malaysia.

Congenital disorders of glycosylation (CDG) are a group of rare, multisystemic genetic diseases caused by defects in glycan biosynthesis and protein glycosylation. Their broad clinical and genetic heterogeneity often require advanced diagnostic strategies. Clinical glycomics and glycoproteomics have emerged as powerful tools for understanding and diagnosing CDG by enabling high-resolution analysis of glycan structures and glycoproteins.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical and chemotherapeutic approaches, the presence of metastatic or recurrent disease is still detrimental to the patient's outcome. Major advances in understanding the molecular mechanisms of OS are needed to substantially improve outcomes for patients being treated for OS.

View Article and Find Full Text PDF