Comparison of uni- and multimodal motion stimulation on visual neglect: A proof-of-concept study.

Cortex

Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland; ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. Electronic address:

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spatial neglect is characterized by the failure to attend stimuli presented in the contralesional space. Typically, the visual modality is more severely impaired than the auditory one. This dissociation offers the possibility of cross-modal interactions, whereby auditory stimuli may have beneficial effects on the visual modality. A new auditory motion stimulation method with music dynamically moving from the right to the left hemispace has recently been shown to improve visual neglect. The aim of the present study was twofold: a) to compare the effects of unimodal auditory against visual motion stimulation, i.e., smooth pursuit training, which is an established therapeutical approach in neglect therapy and b) to explore whether a combination of auditory + visual motion stimulation, i.e., multimodal motion stimulation, would be more effective than unimodal auditory or visual motion stimulation. 28 patients with left-sided neglect due to a first-ever, right-hemispheric subacute stroke were included. Patients either received auditory, visual, or multimodal motion stimulation. The between-group effect of each motion stimulation condition as well as a control group without motion stimulation was investigated by means of a one-way ANOVA with the patient's visual exploration behaviour as an outcome variable. Our results showed that unimodal auditory motion stimulation is equally effective as unimodal visual motion stimulation: both interventions significantly improved neglect compared to the control group. Multimodal motion stimulation also significantly improved neglect, however, did not show greater improvement than unimodal auditory or visual motion stimulation alone. Besides the established visual motion stimulation, this proof-of-concept study suggests that auditory motion stimulation seems to be an alternative promising therapeutic approach to improve visual attention in neglect patients. Multimodal motion stimulation does not lead to any additional therapeutic gain. In neurorehabilitation, the implementation of either auditory or visual motion stimulation seems therefore reasonable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2023.10.018DOI Listing

Publication Analysis

Top Keywords

motion stimulation
68
visual motion
24
multimodal motion
20
auditory visual
20
motion
17
stimulation
17
unimodal auditory
16
visual
13
auditory motion
12
auditory
10

Similar Publications

Brain Activity During Electrical Stimulation of Visual-Motor Illusion with Enhanced Joint Motion Intensity.

J Mot Behav

September 2025

Department Department of Physical Therapy, Faculty of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.

Visual-motor illusion (VMI) is a kinesthetic illusion produced by viewing an image showing joint motion. VMI with enhanced joint movement intensity (power-VMI; P-VMI) is expected to activate a wide range of motor association brain regions, and when combined with electrical stimulation that activates the motor sensory cortex, further activation of brain activity can be expected. This study aimed to verify the effectiveness of VMI using functional near-infrared spectroscopy to confirm brain activity during combined P-VMI and electrical stimulation.

View Article and Find Full Text PDF

The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.

View Article and Find Full Text PDF

Tendon/ligament (T/L) injuries sustained during motion are highly prevalent and severely impact athletes' careers and quality of life. Current treatments, including autografts, allografts, and synthetic ligaments, have limitations such as donor site morbidity, immune rejection, and biomechanical mismatch, especially under dynamic loading conditions encountered in motion. 3D bioprinting offers a revolutionary approach for constructing patient-specific T/L grafts.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition that may develop after fractures, surgery, or soft tissue trauma. It is characterized by pain disproportionate to the initial injury, often accompanied by sensory, motor, autonomic, and trophic changes. Despite extensive research, pathophysiology remains unclear, and treatment approaches are varied, with inconsistent supporting evidence.

View Article and Find Full Text PDF

Functional electrical stimulation (FES) is an effective technique for restoring or enhancing hand motor function in patients with neurological impairments, such as those recovering from stroke or spinal cord injuries. Although many studies have used phenomenological models to investigate the control of FES, few studies have simultaneously employed both methods to study finger output force. This study aims to accurately predict finger output force using the Hill model and a multi-joint finger model under different current conditions.

View Article and Find Full Text PDF