98%
921
2 minutes
20
Spatial neglect is characterized by the failure to attend stimuli presented in the contralesional space. Typically, the visual modality is more severely impaired than the auditory one. This dissociation offers the possibility of cross-modal interactions, whereby auditory stimuli may have beneficial effects on the visual modality. A new auditory motion stimulation method with music dynamically moving from the right to the left hemispace has recently been shown to improve visual neglect. The aim of the present study was twofold: a) to compare the effects of unimodal auditory against visual motion stimulation, i.e., smooth pursuit training, which is an established therapeutical approach in neglect therapy and b) to explore whether a combination of auditory + visual motion stimulation, i.e., multimodal motion stimulation, would be more effective than unimodal auditory or visual motion stimulation. 28 patients with left-sided neglect due to a first-ever, right-hemispheric subacute stroke were included. Patients either received auditory, visual, or multimodal motion stimulation. The between-group effect of each motion stimulation condition as well as a control group without motion stimulation was investigated by means of a one-way ANOVA with the patient's visual exploration behaviour as an outcome variable. Our results showed that unimodal auditory motion stimulation is equally effective as unimodal visual motion stimulation: both interventions significantly improved neglect compared to the control group. Multimodal motion stimulation also significantly improved neglect, however, did not show greater improvement than unimodal auditory or visual motion stimulation alone. Besides the established visual motion stimulation, this proof-of-concept study suggests that auditory motion stimulation seems to be an alternative promising therapeutic approach to improve visual attention in neglect patients. Multimodal motion stimulation does not lead to any additional therapeutic gain. In neurorehabilitation, the implementation of either auditory or visual motion stimulation seems therefore reasonable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2023.10.018 | DOI Listing |
J Mot Behav
September 2025
Department Department of Physical Therapy, Faculty of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.
Visual-motor illusion (VMI) is a kinesthetic illusion produced by viewing an image showing joint motion. VMI with enhanced joint movement intensity (power-VMI; P-VMI) is expected to activate a wide range of motor association brain regions, and when combined with electrical stimulation that activates the motor sensory cortex, further activation of brain activity can be expected. This study aimed to verify the effectiveness of VMI using functional near-infrared spectroscopy to confirm brain activity during combined P-VMI and electrical stimulation.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Marianne Bernadotte Centrum, Department for Clinical Neuroscience, Karolinska Institutet; St Erik Eye Hospital.
The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
The Third Department of Orthopedic Surgery, Fuxin Mining General Hospital of Liaoning Health Industry Group, Liaoning, China.
Tendon/ligament (T/L) injuries sustained during motion are highly prevalent and severely impact athletes' careers and quality of life. Current treatments, including autografts, allografts, and synthetic ligaments, have limitations such as donor site morbidity, immune rejection, and biomechanical mismatch, especially under dynamic loading conditions encountered in motion. 3D bioprinting offers a revolutionary approach for constructing patient-specific T/L grafts.
View Article and Find Full Text PDFCureus
September 2025
Rheumatology, University Hospitals Coventry & Warwickshire, Coventry, GBR.
Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition that may develop after fractures, surgery, or soft tissue trauma. It is characterized by pain disproportionate to the initial injury, often accompanied by sensory, motor, autonomic, and trophic changes. Despite extensive research, pathophysiology remains unclear, and treatment approaches are varied, with inconsistent supporting evidence.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Functional electrical stimulation (FES) is an effective technique for restoring or enhancing hand motor function in patients with neurological impairments, such as those recovering from stroke or spinal cord injuries. Although many studies have used phenomenological models to investigate the control of FES, few studies have simultaneously employed both methods to study finger output force. This study aims to accurately predict finger output force using the Hill model and a multi-joint finger model under different current conditions.
View Article and Find Full Text PDF