98%
921
2 minutes
20
Microfluidic technology was recognized in the 1980s when the first micropumps and micro-valves were developed to manipulate fluids for biological applications [...].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675076 | PMC |
http://dx.doi.org/10.3390/ph16111587 | DOI Listing |
Bioorg Med Chem Lett
September 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine. Electronic address:
Phospholipid-derived nanocarriers represent a versatile and chemically customizable class of drug delivery systems that self-assemble into bilayered vesicles due to their intrinsic amphiphilicity. These systems can encapsulate both hydrophilic and hydrophobic drugs through non-covalent interactions and manipulation of lipid phase behavior. This review examines the molecular and supramolecular principles underlying the formation, stability, and functional performance of key phospholipid-based nanocarriers-including liposomes, transferosomes, ethosomes, invasomes, phytosomes, pharmacosomes, and virosomes.
View Article and Find Full Text PDFSoft Matter
September 2025
Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
Advances in fluidic droplet generation both necessitate and enable accessible, high throughput methods to optimize formulations by measuring surface tension. One fluidic approach involves creating extensional flow using constrictions. Droplets deform within a constriction, and then experience extensional flow upon exiting into a wider channel.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea. Electronic address:
We present a microfluidic strategy for fabricating high-concentration alginate microgels through a combination of shell-mediated gelation and osmotic shrinkage. Using a water-in-oil-in-water double emulsion platform, we introduce a thermally responsive oil shell that undergoes a phase transition upon cooling. This phase change allows spatial control over calcium ion diffusion into the alginate core by forming transient diffusion channels, resulting in localized and uniform ionic crosslinking.
View Article and Find Full Text PDFTalanta
September 2025
Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, China. Electronic address:
Disposable electrochemical aptasensors (DEAs) hold significant promise for different analyte detection across diverse fields, due to inherent advantages of rapid response, portability, low cost, and high sensitivity. This review systematically examines the design strategies, signal amplification methodologies, and recent advances in DEAs in the fields of environmental analysis, food safety monitoring, and medical diagnostics. Specifically, it critically evaluates construction strategies for screen-printed electrodes (SPEs) and paper-based electrodes, including substrate selection, ink formulations, and key fabrication techniques such as screen printing, inkjet printing, deposition methods, and direct-writing technologies.
View Article and Find Full Text PDFPharmaceutics
August 2025
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Controlled release systems, such as polymeric microparticles (MPs), have emerged as a promising solution to extend the bioavailability and reduce dosing frequency for biologic drugs; however, the formulation of these systems to encapsulate highly sensitive, hydrophilic biologic drugs within hydrophobic polymers remains a nontrivial task. Although scalable manufacturing and FDA approval of single emulsion processes encapsulating small molecules has been achieved, scaling more complex double emulsion processes to encapsulate hydrophilic biologics remains more challenging. : Here, we demonstrate that two hydrophilic, low-molecular-weight, recombinant chemokines, CCL22 and CCL2, can be encapsulated in poly(lactic-co-glycolic acid) (PLGA) MPs using a single emulsion method where the proteins are dissolved in an organic solvent during formulation.
View Article and Find Full Text PDF