98%
921
2 minutes
20
Interspecific crosses that fuse the genomes of two different species may result in overall gene expression changes in the hybrid progeny, called 'transcriptome shock'. To better understand the expression pattern after genome merging during the early stages of allopolyploid formation, we performed RNA sequencing analysis on developing embryos of , , and their synthesized allotriploid hybrids. Here, we show that the transcriptome shock occurs in the developing seeds of the hybrids. Of the homoeologous gene pairs, 17.1% exhibit expression bias, with an overall expression bias toward . The expression level dominance also biases toward , mainly induced by the expression change in homoeologous genes from . Functional enrichment analysis revealed significant differences in differentially expressed genes (DEGs) related to photosynthesis, hormone synthesis, and other pathways. Further study showed that significant changes in the expression levels of the key transcription factors (TFs) could regulate the overall interaction network in the developing embryo, which might be an essential cause of phenotype change. In conclusion, the present results have revealed the global changes in gene expression patterns in developing seeds of the hybrid between and , and provided novel insights into the occurrence of transcriptome shock for harnessing heterosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671433 | PMC |
http://dx.doi.org/10.3390/ijms242216238 | DOI Listing |
Physiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
Heat shock protein 70 (HSP70) represents a critical barrier to effective mild-temperature photothermal therapy (MPTT), limiting its clinical utility in aggressive cancers like triple-negative breast cancer (TNBC). While small interfering RNA (siRNA)-mediated HSP70 suppression offers a promising solution, optimal timing for this therapeutic combination remains unexplored. Here, it is demonstrated that precisely timed administration significantly enhances MPTT efficacy through systematic temporal characterization of HSP70 expression dynamics.
View Article and Find Full Text PDFGut Liver
September 2025
Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Background/aims: Patient-derived organoids (PDOs) are promising preclinical models that replicate critical tumor features. However, intratumoral heterogeneity challenges the clinical utility of PDOs, especially in capturing diverse tumor cell subpopulations.
Methods: Single-cell transcriptomics was used to analyze PDOs from distinct sites within a single gastric cancer tumor, aiming to assess their ability to reflect intratumoral heterogeneity.
J Med Chem
September 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
We explored the lipopolysaccharide-binding properties of adenylate kinase from (MtAdk) to facilitate the design of novel peptide antibiotics. Notably, we de novo designed 11-mer peptides derived from the AMP-binding domain (Lys44 to Asp54) of MtAdk. Among 71 designed peptides, DD-S067 was the most effective, especially against carbapenem-resistant (CRAB), with minimal development of drug resistance.
View Article and Find Full Text PDF