98%
921
2 minutes
20
Inherited retinal diseases (IRDs) constitute a prevalent group of inherited ocular disorders characterized by marked genetic diversity alongside moderate clinical variability. Among these, -related eye pathology stands as a prominent form affecting the retina. In this study, we conducted an in-depth analysis of 96 patients harboring variants in the European part of Russia. Notably, the complex allele c.[1622T>C;3113C>T] (p.Leu541Pro;Ala1038Val, or L541P;A1038V) and the variant c.5882G>A (p.Gly1961Glu or G1961E) emerged as primary contributors to this ocular pathology within this population. Additionally, we elucidated distinct disease progression characteristics associated with the G1961E variant. Furthermore, our investigation revealed that patients with loss-of-function variants in were more inclined to develop phenotypes distinct from Stargardt disease. These findings provide crucial insights into the genetic and clinical landscape of -related retinal dystrophies in this specific population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671488 | PMC |
http://dx.doi.org/10.3390/ijms242216231 | DOI Listing |
HGG Adv
September 2025
Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany; Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany. Electronic address:
Cystic kidney disease and related ciliopathies are caused by pathogenic variants in genes that commonly result in ciliary dysfunction. For a substantial number of individuals affected by those cilia-related diseases, the causative gene still remains unknown. Using massively parallel sequencing, we here identified a pathogenic bi-allelic variant in the gene encoding PALS1-Associated Tight Junction Protein (PATJ; also known as Inactivation-No-Afterpotential D-Like, INADL) in an individual with ciliopathy.
View Article and Find Full Text PDFClin Rheumatol
September 2025
Histocompatibility Department, Hedi Chaker UH, University of Sfax, Sfax, Tunisia.
Objective: Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease. Genetic factors may play a pivotal role in determining susceptibility to these disorders. HLA associations with SSc, especially HLA class II, were investigated in different populations but not in Tunisia.
View Article and Find Full Text PDFAm J Hum Genet
September 2025
Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.
Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.
View Article and Find Full Text PDFAPMIS
September 2025
Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.
Clinical microbiology involves the detection and differentiation of primarily bacteria, viruses, parasites and fungi in patients with infections. Billions of people may be colonised by one or more species of common luminal intestinal parasitic protists (CLIPPs) that are often detected in clinical microbiology laboratories; still, our knowledge on these organisms' impact on global health is very limited. The genera Blastocystis, Dientamoeba, Entamoeba, Endolimax and Iodamoeba comprise CLIPPs species, the life cycles of which, as opposed to single-celled pathogenic intestinal parasites (e.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA.
Black pod disease, caused by a complex of Phytophthora species, poses a severe threat to global cacao production. This study explores the use of CRISPR-Cas9 genome editing to reduce disease susceptibility in Theobroma cacao L. by targeting the TcNPR3 gene, a known negative regulator of plant defence.
View Article and Find Full Text PDF