98%
921
2 minutes
20
Neurodegenerative disorders, such as Alzheimer's disease (AD), negatively affect the economic and psychological system. For AD, there is still a lack of disease-altering treatments and promising cures due to its complex pathophysiology. In this study, we computationally screened the natural database of fungal metabolites against three known therapeutic target proteins of AD. Initially, a pharmacophore-based, drug-likeness category was employed for screening, and it filtered the 14 (-) best hits out of 17,544 fungal metabolites. The 14 best hits were docked individually against GSK-3β, the NMDA receptor, and BACE-1 to investigate the potential of finding a multitarget inhibitor. We found that compounds , , and were immuno-toxic, whereas , , , and had a higher LD dose (5000 mg/kg). Among the examined metabolites, the Bisacremine-C (compound ) was found to be the most active molecule against GSK-3β (ΔG: -8.7 ± 0.2 Kcal/mol, Ki: 2.4 × 10 M), NMDA (ΔG: -9.5 ± 0.1 Kcal/mol, Ki: 9.2 × 10 M), and BACE-1 (ΔG: -9.1 ± 0.2 Kcal/mol, Ki: 4.7 × 10 M). It showed a 25-fold higher affinity with GSK-3β, 6.3-fold higher affinity with NMDA, and 9.04-fold higher affinity with BACE-1 than their native ligands, respectively. Molecular dynamic simulation parameters, such as RMSD, RMSF, Rg, and SASA, all confirmed that the overall structures of the targeted enzymes did not change significantly after binding with Bisacremine-C, and the ligand remained inside the binding cavity in a stable conformation for most of the simulation time. The most significant hydrophobic contacts for the GSK-3β-Bisacremine-C complex are with ILE62, VAL70, ALA83, and LEU188, whereas GLN185 is significant for H-bonds. In terms of hydrophobic contacts, TYR184 and PHE246 are the most important, while SER180 is vital for H-bonds in NMDA-Bisacremine-C. THR232 is the most crucial for H-bonds in BACE-1-Bisacremine-C and ILE110-produced hydrophobic contacts. This study laid a foundation for further experimental validation and clinical trials regarding the biopotency of Bisacremine-C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669353 | PMC |
http://dx.doi.org/10.3390/biom13111613 | DOI Listing |
Naturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFPhytopathology
September 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.
View Article and Find Full Text PDFFront Microbiol
August 2025
Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.
View Article and Find Full Text PDFClin Pharmacol
September 2025
Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia.
Red yeast rice (RYR) is an Asian indigenous medicine that ferments grains using the Monascus fungi, specifically . Monacolins, pigments, phenols, sterols, and benzopyrans, such as the mycotoxin citrinin, were proven to be present in RYR, contributing to its numerous effects. This study aims to provide a thorough overview of the in vitro and in vivo pharmacological activities of red yeast rice, its studies in humans, and a summary of recent case reports.
View Article and Find Full Text PDF